
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE
Board of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE:
Author's Last Name, Initials. 2021. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission
to reprint or reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (445 Hamilton Ave., White
Plains, NY 10601).

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®)

Dynamic Seamless Resource Allocation For Live Video
Compression On A Kubernetes Cluster

Abdelmajid Moussaoui
ATEME, a.moussaoui@ateme.com.

Mickaël Raulet
ATEME, m.raulet@ateme.com.

Thomas Guionnet
ATEME, t.guionnet@ateme.com.

Written for presentation at the
SMPTE 2021 Annual Technical Conference & Exhibition

Abstract. A solution is proposed on top of Kubernetes to dynamically allocate services resources
without service interruption. It serves as the basis for optimizing a live video compression service. It
is demonstrated that dynamic resource allocation can benefit to a video compression application,
either by reducing the resource consumption, hence costs, or by enhancing delivered video quality.
By combining the proposed solution with an elastic encoder and machine learning for content
complexity estimation, a content and application aware dynamic resource orchestrator for real-time
video compression is designed. Preliminary experimental results using ATEME Titan Live Micro-
services [8] encoders demonstrate substantial bitrate reductions on even the most demanding
channel.

Keywords. Video compression, machine learning, AI, Cloud, Kubernetes, Video Coding, HEVC,
Video quality, Content Adaptive.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 2

Introduction
In the field of video encoding, a microservices architecture is becoming more and more
beneficial for the advantages realized over monolithic applications. The concept of
microservices [1][2] allows a dramatic reduction of the design and implementation cycles
durations and simplifies support and update of the applications. The virtualization concept on
the other hand, allows being highly flexible and independent of the hardware. In the case of
video compression, where performance is critical, the optimal granularity of the microservices
must be optimized under constraints of real-time, low-latency, efficient data flow and availability.
Practically, microservices must be stored in containers. The high number of containers requires
orchestration. Among many available solutions [4][5][6], the work presented in this paper relies
on Docker [7] for containerization and Kubernetes [5] for orchestration.
Kubernetes is an open-source containers orchestration platform, initially developed by Google
[12] in 2014 and was later transferred to the Cloud Native Computing Foundation (CNCF).
Kubernetes manages clusters of physical or virtual machines. It schedules containers to run on
machines based on their available resources and the requirements of each container. It is
widely used for management of public and private cloud services.
The video encoding solution considered in this paper is composed of several independent
services which are thus managed by Kubernetes. However, the performance of a practical
implementation of a video encoder is a trade-off between bitrate, perceived video quality,
computing resource and architecture design. Kubernetes allows controlling the amount of
resources dedicated to each microservice. Thus, in the video compression context, one may
consider allocating the resource non uniformly to different video services, depending on the
desired trade-off for each video service. This must be carried out explicitly by the user though,
since Kubernetes, as an orchestrator, is blind to the specifics of each application.
In this paper, it is proposed to complement Kubernetes with a custom-made orchestrator, with
the goal of maximizing perceived video quality while minimizing the computing resources
consumption, hence exploitation costs. It is demonstrated through experimental results that the
full potential of the approach requires dynamic resource adaptation to be reached. However, to
change the resources allocated to a service, Kubernetes requires to stop and restart the
service, causing live service interruption. The main contribution of this paper is a new
mechanism allowing seamless dynamic resource allocation in the Kubernetes context. A full
experimental system is demonstrated, applying the proposed dynamic resource allocation to a
set of live encoders deployed in a Kubernetes environment. The rest of this paper is organized
as follows: first, some elements of context and preliminary results are provided. The proposed
system is then outlined, and the dynamic allocation mechanism is presented. Finally,
experimental results are provided before conclusion.

Context And Preliminary Experiments
A given video encoder implementation can provide several trade-offs between resource
consumption and video quality. This is the case, for example, with the High Efficiency Video
Coding (HEVC) implementation x265 [9]. The tuning parameter (-preset) allows choosing a
speed/coding performance trade-off in a range of predetermined settings. In this paper, the

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 3

considered encoder adapts automatically to the available computing resources. That is, given
the real-time constraint, the encoder chooses its parameters automatically depending on the
platform capacity and current load. This tuning is updated dynamically. If the overall load of the
platform changes, the tuning changes accordingly. The more computing resources available,
the better the delivered coding efficiency. This concept is called video encoder elasticity [15].
Example experiments have been conducted using the HEVC codec in its default configuration.
All the considered video sequences have a 1080p (high definition, HD) resolution. Figure 1a
presents rate-distortion curves [13] for several encodings of the same 12 minutes movie extract.
Each encoding is performed in real-time, with a fixed number of central processing unit (CPU)
cores allocated to the corresponding microservice. In the video compression context, a rate-
distortion curve illustrates the trade-off between bitrate and distortion (or quality) achieved by an
encoder implementation or configuration. A configuration is found to be better than a reference
configuration if its rate-distortion curve is above the reference rate-distortion curve. That is, for a
given distortion, the bitrate is found to be lower, or conversely, for a given bitrate, the quality is
found to be higher. The experimental observations confirm that the encoder adapts to the
available computing resource. Indeed, all the curves of Figure 1a have been generated with
strictly the same configuration, except for the number of CPU allocated. Thus the rate-distortion
performance improves as the CPU number increases.

Figure 1 (a) Rate-Distortion curve for different CPU core allocations, (b) Sum of Mean Squared Errors (MSE) for

different CPU allocations among two video channels.
In a second experiment, the encodings of two different 12 minutes movie extracts are
considered. The two contents have the same resolution and are both encoded using HEVC. An
arbitrary fixed budget of 20 CPU cores is allocated to be shared between the two encoders. One
must note that this fixed CPU budget is shared in a controlled manner between the two
channels. A first part is allocated exclusively to the first channel, and the remaining part is
allocated exclusively to the second channel. One may split it even and allocate 10 CPU cores to
each channel, or decide to allocate more CPU cores to one of the channels. The goal of this
experiment was to find the optimal repartition of these 20 CPU cores between the two encoders,
which minimizes the distortion for a given bitrate.The experiment showed that the allocation that
maximizes the overall quality is not uniform, as illustrated on Figure 1b. Additionally, it is well
known that the characteristics of contents are not constant in time. This is especially true for a
24/7 live channel. Based on these two preliminary experiments, it is advocated that with a
limited amount of resources, dynamic resource allocation can improve the overall compression
efficiency of a set of live channels.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 4

Proposed orchestration system
A general live video encoding orchestration system is outlined on Figure 2. A Kubernetes cluster
manages the encoders deployed in Pods, the smallest Kubernetes manageable unit. In addition
to this baseline structure, a “Pod Handler” module is responsible for seamless dynamic resource
allocation, following the resource allocation instructions computed by the Orchestrator module.
The latter computes optimal allocations based on the states of the encoders, which is updated
in real-time. The dynamic allocation system is detailed in the next section, while other elements
are outlined below.
The content characteristics are computed in the encoder lookahead. They are an estimate of
the relationship between bitrate, CPU resource and video quality, obtained through a machine
learning (ML) process. The orchestrator receives the content characteristics from the encoders
and computes an optimal allocation depending on the total available computing resource and
the optimization target. It is worth noting that several strategies are possible. One may minimize
costs, while another may maximize video quality under resources constraint. The update
frequency of the allocation is a tunable parameter.

.
Figure 2: Resources updating and orchestration process.

Dynamic resource allocation
Seamless dynamic allocation is a key enabler for the proposed system. Kubernetes allows
control of the allocation of Pod resources (each encoder runs in a Pod), but Kubernetes does
not allow the system administrator to change them dynamically without service interruption. To
overcome this problem, the proposed method relies on an interaction between operating system
features and Kubernetes device plugin feature [11]. It consists of updating the number of
resources advertised to the Kubernetes scheduler and changing the current allocation using the
Linux system tools in a way that is transparent to Kubernetes.
On Linux servers, for each instantiated Pod, Kubernetes creates several files in the control
groups (cgroups) [10] file system to handle the resources allocated to the Pod. The file CPU
Completely Fair Scheduler Quota (CFS Quota) is used to control the Pod’s CPU usage limit,

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 5

which represents the total amount of time the tasks of the Pod are allowed to run in a period.
This period is defined in another file: cpu.cfs_period_us. For example, for a CFS period of 100
ms, if the limit is 50 ms, that means 50% of a CPU Core is available to the Pod. In this paper,
only integer numbers of CPU Cores are considered, so CPU limit should be a multiple of the
period.
The Linux kernel monitors and enforces the CPU usage limit. The CFS Quota file can be
updated dynamically to change the allocation for a running Pod. The device plugin is used to
keep the Kubernetes scheduler informed that the number of CPU available has changed. The
device plugin is a feature implemented on top of Kubernetes to advertise custom resources, like
GPUs or FPGAs, that Kubernetes does not support by default.
After changing the CPU limit to the desired number of CPU Cores, a set of CPU cores is
selected by the PodHandler (Figure 2) for the Pod. These cores are chosen when it’s possible
to be in the same physical CPU socket (Non-Uniform Memory Access [14] - NUMA - aware
affinity) to improve the performance of the encoder. The final step is to set the new affinity within
the Pod to change the cores that the application is running on, and to set the Linux real time
priority to the threads of the application for them to have exclusive access to that CPU cores.

Experimental results
The proposed method has been implemented on a private cloud in ATEME premises. Many
tests have been conducted with various configurations and repeated to validate the stability of
the system running live. From a large set of varied sequences, several subsets have been
picked to perform our experiments. Little variation in the results has been found, as long as the
subsets are heterogeneous. In a sense, the behavior of the system is comparable to a statistical
multiplexer (statmux), as an allocation for a set of sequences having all exactly the same
characteristics brings little to no gain. The following example has been kept as a meaningful
representative of these experiments. Four HD 1080p live channels are configured in constant
quality (CQ) mode, all targeting the same visual quality. This mode delivers variable bit-rate
(VBR) encodings. Therefore, the performance at a given quality is measured by the bitrate. The
better the allocation, the lower the bitrate. An arbitrary number of 40 CPU cores is available to
be shared between the 4 channels.
Three runs are conducted:

• Uniform allocation: the same computing resource is statically allocated to each channel.
• Static allocation: resource allocation is static, though non uniform. Allocation is hand-

tuned to provide optimal performance.
• Dynamic allocation: resource allocation is performed automatically and dynamically

using the proposed orchestrator. The optimized resource allocation is shown in Figure 3.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 6

Figure 3: Dynamic allocation of 40 CPU cores among 4 channels encodings.

For each combination of sequence and settings, rate distortion curves are derived, from which
Bjøntegaard Delta Rates (BDRates) [3] can be computed. Table 1a presents the BDRate gains
relative to the uniform allocation. The first observation is that resource augmentation for one
channel implies resource reduction for at least one other channel, leading to BDRate losses.
Still, with the proposed dynamic allocation, an overall BDRate gain is achievable.
However, the BDRate is a relative performance metric which does not provide the full picture in
this context. The bitrates for a same level of quality are presented in Table 1b. The overall
performance is measured by the sum of the bitrates for the 4 sources, with a lower total bitrate
indicating better performance. Compared to uniform allocation, static allocation decreases the
total bitrate by 8.2%. The dynamic allocation further reduces the bitrate by 1.2%, that is, 9.4%
reduction compared to uniform allocation. For the highest bitrate sequence, Sports-1, the bitrate
is reduced by 12.8% thanks to dynamic allocation, which represents almost 1Mbps on a very
demanding content. The absolute bitrate increase on the Movie-2 and Movie-3 contents is
comparatively negligible. Gaining 1 Mbps on a channel is an opportunity to reach more users
with the full resolution quality. For the content provider, it also translates into cost control. With
uniform allocation, more CPU cores would be necessary to reach the same bitrate as the
proposed solution, hence a higher cost.

Table 1: (a) BDRate gains compared to uniform allocation, (b) Bitrates in Mbps for all runs at the same quality.

 STATIC DYNAMIC Uniform Static Dynamic

Movie -1 -9.09% -8.49% Movie-1 4.70 4.22 4.25

Movie-2 16.19% 5.99% Movie-2 1.13 1.31 1.19

Sports -1 -9.65% -9.38% Sports-1 7.40 6.51 6.45

Movie -3 9.60% 8.58% Movie-3 0.54 0.58 0.58

Mean 1.76% -1.07% SUM 13.76 12.63 12.47

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 7

The difference between static and dynamic allocation may seem limited. However, for practical
reasons, the experiment is conducted on 10 minutes long contents. On this short duration, the
characteristics of each content varies, but remains in a limited interval, as illustrated by the
corresponding CPU allocation (Figure 3). Therefore, a more dramatic difference is expected in
production, but will need to be demonstrated empirically. Additionally, the channels contents
complexity can change over time, hence hand tuned content aware static allocation is unusable
in production.

Conclusion
A content and application aware, purpose-built dynamic resource orchestrator for real-time
video compression in the cloud has been proposed and demonstrated. The key factor in the
system is a method that allows changing the CPU resources allocated by a Kubernetes cluster
to a video encoder without interrupting live transmission. The benefits of the system are
demonstrated through experimental results. Up to 12.8% bitrate reduction is demonstrated on a
complex sport channel, with an average bitrate reduction of 9.4% on a pool of 4 mixed
characteristics channels.
The experiments have been conducted in a private cloud. Many runs with various parameters
have been performed in order to assess the stability of the system and to provide meaningful
performance measurement across a large range of rate/quality settings. On that basis, the next
step is naturally to move on to real production set-ups. Future works also include refinement of
the orchestration algorithm and refinement of the content characteristics estimation ML based
tool, as well as the demonstration of multiple optimization use cases.

References
1. N. Dragoni et al, Microservices: yesterday, today, and tomorrow.

https://arxiv.org/abs/1606.04036
2. Francesco et al, Architecting with microservices: A systematic mapping study.

https://doi.org/10.1016/j.jss.2019.01.001
3. G. Bjøntegaard, Calculation of average PSNR differences between RD-curves,

Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, Texas, USA, 2001.
4. Docker Inc., Docker Swarm, Container’s orchestrator.

https://docs.docker.com/engine/swarm/key-concepts/
5. The Linux Foundation , Kubernetes Platform Container’s Orchestrator.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
6. The Apache Software Foundation , Mesos A distributed systems kernel.

http://mesos.apache.org/
7. Docker Inc , Docker Software containerization platform. https://docs.docker.com/get-

started/overview/
8. ATEME , ATEME Virtualized Video Solution, https://www.ateme.com/wp-

content/uploads/2021/02/ATEME-VIRTUALIZED-VIDEO-SOLUTION.pdf 2021.
9. MulticoreWare Inc, https://x265.readthedocs.io , x265 HEVC implementation.
10. Serge Hallyn, Linux Control Groups File System https://man7.org/linux/man-

pages/man7/cgroups.7.html
11. The Linux Foundation , Kubernetes device plugin

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-

https://arxiv.org/abs/1606.04036
https://doi.org/10.1016/j.jss.2019.01.001
https://docs.docker.com/engine/swarm/key-concepts/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://mesos.apache.org/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.ateme.com/wp-content/uploads/2021/02/ATEME-VIRTUALIZED-VIDEO-SOLUTION.pdf
https://www.ateme.com/wp-content/uploads/2021/02/ATEME-VIRTUALIZED-VIDEO-SOLUTION.pdf
https://x265.readthedocs.io/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 8

plugins/
12. Abhishek Verma et al, Large-scale cluster management at Google with Borg,

https://arxiv.org/pdf/1901.07821.pdf
13. Yochai Blau, Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff

https://doi.org/10.1002/0471219282.eot142.
14. Linux Kernel Organization, NUMA https://www.kernel.org/doc/html/v4.18/vm/numa.html
15. Herbest et al, Elasticity in Cloud Computing: What It Is, and What It Is Not.

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://arxiv.org/pdf/1901.07821.pdf
https://doi.org/10.1002/0471219282.eot142
https://www.kernel.org/doc/html/v4.18/vm/numa.html
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst

	Dynamic Seamless Resource Allocation For Live Video Compression On A Kubernetes Cluster
	Written for presentation at the
	Keywords. Video compression, machine learning, AI, Cloud, Kubernetes, Video Coding, HEVC, Video quality, Content Adaptive.
	Introduction
	Context And Preliminary Experiments
	Proposed orchestration system
	Dynamic resource allocation
	Experimental results
	Conclusion
	References

