

SMPTE 2021 ATC Manuscript template

Tighter NIC/GPU Integration Yields Next Level Media
Processing Performance

Thomas Kernen

NVIDIA

Thomas True
NVIDIA

Written for presentation at the
SMPTE 2021 Annual Technical Conference & Exhibition

Abstract. As the media industry further consolidates building services based on Commercial-Off-The-
Shelf (COTS) hardware, the requirement for increasing performance continues to accelerate. The
processing of video resolutions up to Ultra HD (UHD) and 8K, higher frame rates, increased bit depth,
and High Dynamic Range (HDR) imagery, requires tighter integration and optimization between the
Network Interface Controller (NIC) and the Graphical Processing Unit (GPU). Combined with
simultaneous input and output of multiple streams, this creates the potential for performance
bottlenecks that must be unlocked.

This paper describes how COTS hardware platforms running GPUs alongside ST 2059-2 PTP locked
NICs which are accurately pacing packets according to ST 2110-21 requirements may further increase
their performance throughput by reducing CPU driven data copy overhead. And in doing so, reduce
processing latency and jitter, and more effectively use GPU resources while freeing up CPU resources.

Keywords. GPU, NIC, DPU, PTP, 2110, Timing.

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE Board
of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE: Author's Last
Name, Initials. 2021. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission to reprint or
reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (445 Hamilton Ave., White Plains, NY
10601).

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®)

mailto:jwelch@smpte.org

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 2

Introduction
As live media production workflows continue to embrace IT-based systems for their transition
from SDI to IP, the focus on designing tightly coupled solutions between the different
components increases. This is specifically due to the introduction of the SMPTE ST 21101
disaggregated essence model whereby audio, video and metadata are transmitted as individual
RTP streams, requiring a tight alignment of these flows at source and destination to be
maintained via IEEE 1588 Precision Time Protocol2, as defined in the SMPTE ST 2059-2 PTP
Profile3.

Leveraging the Input/Output function of Network Interface Cards (NIC) designed to offload Data
Center class applications at speeds in excess of 100 Gigabits per second per interface is now
common practice. In order to unlock such performance capabilities, the entire Commercial-Off-
The-Shelf (COTS) based hardware system, i.e: the sum of the individual components, must be
set up in an optimal manner, something common to hyperscalers for their demanding
applications and workloads. In this context, we need to transpose those capabilities to the world
of ST 2110 IP flows.
This is performed via a series of optimizations that range across a broad spectrum of
capabilities: A Data Processing Unit (DPU) incorporated into the SmartNIC running the PTP
stack to provide an Operating System (OS) agnostic timing reference for accurate packet
scheduling of ST 2110 flows or bypassing the CPU and with the direct data transfer between the
NIC and the Graphics Processing Unit (GPU). These lead to an increase in throughput for all
media processing applications.

ST 2110 & COTS Network Adapters
Ever since the original design for the Network Interface Controller (NIC) in the early 1970s, the
packet rate has been slowly but steadily increasing over the years. Today, 100 Gigabit/s NICs
are not uncommon in high-performance servers designed to run and accelerate datacenter
workloads. The exact same Common Of The Shelf (COTS) hardware is found in modern media
processing servers.
As the bandwidth rates increased, the packet processing rate on the host was not able to keep
up with the original single queue First In, First Out (FIFO) model. To break this bottleneck
requires several innovations that are now common in high-performance NICs. Here are some
examples that are used by many NIC implementations :

● Direct Memory Access (DMA) copying data to/from the NIC to memory thereby removing

the intermediate CPU processing stage.
● Packet checksum computation offload4 for send and/or receive messages to the NIC
● Segmentation Offload5 moves a multipacket buffer to the NIC which then splits this

buffer into separate packets thereby freeing up CPU resources. This may apply to TCP
and/or UDP packets.

● Receiver Side Scaling (RSS)6 enables packets to be distributed to separate queues,
each queue then being assigned to a different CPU or CPU core thereby reducing the

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 3

risk of packets being handled by a CPU core currently swamped by inbound data while
others are idle.

● Large Send Offload (LSO)7 allows the TCP stack to build a longer TCP message and
send it in one call down the stack. The adapter then re-segments the message into
multiple TCP packets. This offloads a large amount of kernel processing from the CPU
to the NIC.

● Large Receiver Offload (LRO), also known as Receive Segment Coalescing (RSC) 8,
provides the same kind of functionality as above but for received packets9.

● UDP Segmentation Offload (USO) provides similar capabilities to LSO for UDP packets.
● Header-Data split10 improves network performance by splitting the headers and data in

received Ethernet frames into separate buffers.

These offloads are some examples of what is achievable with modern high-performance NICs
to achieve sending and/or receiving packets at line rate of the NIC port(s).

Additionally, kernel bypass capabilities allow for further performance in the operating system.
Reducing the OS kernel overhead by enabling applications to directly access the network
adapter resources. Frameworks designed for media workflows such as NVIDIA’s Rivermax
SDK11 not only leverage the NIC offloads and the kernel bypass capabilities but also provide a
common multi-OSs (Linux and Windows) API layer to program the NIC to send and/or receive
ST 2110 media flows.

Timing and pacing constraints in ST 2110-21
SMPTE ST 2110-2112 defines the traffic shaping and delivery timing for the ST 2110 video
flows. These flows must adhere to specific criteria for the sender/source and network model.
This is a critical part of achieving the required performance for operating over an IP network.
The reason for shaping this traffic is not only to minimize packet delay variations (PDV), which
could otherwise lead to jitter, increased latency and/or dropped packets but also to avoid
congestion. This is managed via accurate packet pacing at a fixed rate, per flow, derived from
the media resolution and frame rate. A detailed analysis of the impact of the ST 2110-21 traffic
model on media flows can be found here13 and measurement results here14.
Therefore, compliance with ST 2110-21’s strict timing accuracy requirements, combined with
high throughput interfaces for sending and/or receiving multiple video streams at high
resolution/depth//bitrates require a full set of NIC and OS offload hardware capabilities. These
shall ensure that the I/O performance is maximized while minimizing the impact on the timing
elements such as the PTP stack.

Timing as a Service (DPU)

What is a DPU?
For many years, Central Processing Units (CPUs) were the sole programmable element in most
computers. Flexible and responsive they handled the processing of all the compute workloads.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 4

More recently the Graphics Processing Unit (GPU), has taken a central role. Originally used to
deliver rich, real-time graphics, their parallel processing capabilities make them ideal for
accelerated computing tasks of all kinds. Thanks to these capabilities, GPUs are essential to
many types of more recent workloads such as artificial intelligence, deep learning and big data
analytics applications.

The introduction of the Datacenter Processing Unit (DPU) as the 3rd pillar of the data-centric
accelerated computing model was designed to move the data around between the different
parts of the workloads, across the CPU/GPU boundaries between hosts.

As such the DPU is a new class of programmable processors that combines three key
elements. As a system on a chip (SOC), a DPU combines:

1. A high-performance, software-programmable, multi-core CPU, typically based on the

widely used ARM architecture and tightly coupled to the other SoC components.
2. A high-performance network interface capable of parsing, processing and efficiently

transferring data at line rate to GPUs and CPUs.
3. A rich set of flexible and programmable acceleration engines that offload and improve

application performance.

While the DPU can be used as a stand-alone embedded processor, it’s more often incorporated
into a SmartNIC as illustrated in Picture 1 below. As such it provides a programmable network
adapter card with programmable offload accelerators and Ethernet connectivity on a single PCIe
adapter.

Picture 1. NVIDIA BlueField-2 Data Processing Unit

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 5

Challenges in delivering consistent timing across hosts
One of the key pillars of an SMPTE ST 2110 system is a stable and accurate time transfer built
upon the IEEE 1588 Precision Time Protocol (PTP). The ST 2059 specifications define the PTP
profile parameters for the time transfer and the related timing metadata consumed by the
endpoints (PTP Followers).
In a classical bare metal system, the PTP stack is the only entity that controls the PTP timing
system via the PTP Hardware Clock (PHC)15. When the PTP stack is running as a PTP Follower,
it disciplines the PHC via the PTP messages that are received by the host. Further information
about PTP behavior in SMPTE ST 2110 networks, its efficiency and monitoring can be found
here16, here17 and here18.
Assuming that the host is Linux based and using hardware timestamping capable NIC with a
stable timestamping engine such as the NVIDIA ConnectX 6Dx NIC19, the expected performance
will be in line with the SMPTE PTP ST 2110-21 requirements for packet pacing multiple media
flows concurrently at all resolutions up to UHD-2/8K.
As real-time media production services evolve towards more complex workflows, based on
multiple Operating Systems (OS) specifically Linux and Windows, and sharing hardware
resources via virtualization of the host functions (CPU, GPU, NIC, memory, storage, ...) the
requirements for a consistent timing reference solution across all the different system
combinations increases dramatically.

Excluding all upstream timing-related elements such as GrandMaster(s) and PTP-aware network
switches, there are still several components on each host that may introduce variability in the time
transfer and accurate and stable representation of time.
Such elements include:

● PTP stack parameters and servo control loop that differ per stack implementation leading
to different stack behaviors when processing PTP messages.

● CPU interrupts causing a PTP stack not to process messages during a short period of
time due to other tasks preempting the CPU core running to the PTP stack.

● Operating System induced system noise & jitter that further impacts process scheduling.
● PTP timestamping accuracy under system and bandwidth load.
● Hardware and/or software misconfigurations causing NIC and CPU resources for the PTP

stack to not be connected to the same Non-Uniform Memory Access (NUMA)20 thereby
introducing additional jitter.

● Hardware timestamping engine accuracy differs from NIC to NIC implementation rounding
values across different boundaries.

● Operating System timing capabilities differ significantly between Linux’s PTP Hardware
Clock Infrastructure with a full and proven framework userspace and kernel API set users
by multiple hardware and software implementations vs. Windows’ limited framework
requiring vendor-specific PTP stack implementations for specific NICs or the upcoming
native Windows support that is currently limited to software timestamping21.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 6

Due to this diversity in the construct of elements that feed into the time transfer capabilities, the
end result across hosts will diverge. As accuracy requirements increase, i.e. improved timing
resolution & clock stability, these ever so small changes in behavior add an additional burden to
maintaining a coherent timing system across all hosts.

Delivering timing with a DPU
Since a DPU SmartNIC can provide both a highly efficient NIC with offload capabilities and
excellent timestamping resolution combined with a host independent set of computing resources
that can be tuned for specific tasks, this lays the groundwork for delivering a timing framework
that is completely independent of the processes running on the host itself.
A host can therefore offload and contain the timing components independently of the number of
applications that may be consuming the time transfer capabilities such as for the following use
cases:

● Bare Metal server running an operating system with native PTP capabilities and one or
multiple applications consuming time

● Bare Metal server running an operating system with limited or no native PTP capabilities
and one or multiple applications consuming time

● Virtualized server running one or more operating systems, with or without native PTP
capabilities and one or multiple applications consuming time.

Figure 1 below illustrates the third use case (Virtualized server with multiple OSs) sharing the
timing capabilities managed and exposed by the DPU to the host.
The NVIDIA BlueField-2 DPU22 uses the NIC component (based on the NVIDIA ConnectX-6 Dx
NIC) for the hardware timestamping of the sent and received PTP packets from the Ethernet
interface. The PTP Hardware Clock (PHC) still resides on the NIC portion of the DPU card and
will be disciplined by the PTP stack as it would for a bare metal PTP native OS running a PTP
stack.
Since the PTP stack now resides in an OS-independent portion of the host, i.e.: on an arm core
of the DPU. The communication between the PTP stack and the PHC is done over a Physical
Function (PF) allowing for the PTP stack sitting in the DPU arm core user space to
communicate with the NIC. This is done to discipline the PHC as well as sending and receiving
the PTP messages to/from the PTP stack to the NIC. This is the only read/write to/from the PHC
that is allowed on the host and done so to avoid any other application(s) from attempting to
control the PHC.
All operating systems consuming time will have a read-only capability to/from the PHC, either
via a Physical Function (PF) or a Virtual Function (VF) from the NIC. Once again this prevents
any other application than the PTP stack residing on the arm core of the DPU to discipline the
common PHC.

Applications will then be presented with a “get_time” like function for obtaining the time for their
own usage.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 7

Figure 1. DPU-Based Timing Delivery in a Multi-OS Virtualized Environment

By doing so, we can ensure that only one entity oversees disciplining the PHC per host,
therefore preventing misconfiguration or administrative abuse of the common timing resource
shared across the different operating systems and applications served by a single host.

Syncing GPU from PTP service
In a GPU-based video processing application, frame/field synchronization of the GPU
processing to the stream timebase is required for both video capture and playout. At the time of
this writing, there is no hardwired connection between the GPU and the DPU providing the PTP
time service and furthermore the GPU as a device does not maintain a hardware clock in sync
with the PTP time. As a result, GPU synchronization at frame granularity is purely software-
controlled based upon the offset between the RTP packet timestamps and the current PTP time
as reported by the PTP time service running on the DPU. Direct hardware synchronization of
the GPU to the PTP time is a topic of future research.

In the case of SMPTE ST 2110-2023 and ST 2110-2224 video capture, the RTP timestamps are
the same for all packets composing an image frame and represent the image capture time. The
GPU frame processing must be aligned to the frame boundaries as determined by the RTP
timestamps, otherwise, frame misalignment of the GPU processing will result in image tearing
as processing is performed on two partial frames that are not temporarily aligned as shown in
Figure 2. This frame alignment is achieved by detecting the Marker bit in the RTP header and
ensuring that the RTP timestamps for all packets in the frame are at the same offset from the
current PTP time queried from the DPU time service as illustrated in Figure 3. Furthermore, if
this offset drifts between successive frames, the GPU is out of sync with the video rate resulting
in a non-constant latency in the GPU processing that can be problematic in a real-time
broadcast or virtual production pipeline. This non-constant latency can be avoided by delaying
the start of GPU processing until the current PTP time is a constant offset from the capture time
and ensuring that the GPU processing always completes within the duration of the current

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 8

frame. It should also be noted that this alignment is for GPU-based video essence processing
only and not for direct display of the video frames by the GPU as the frame timing and
alignment is not guaranteed to be aligned with the vertical retrace of the GPU display and could
result in tearing or other display artifacts. Synchronization of the GPU vertical retrace to the
IEEE Start of Frame Delimiter (SFD) will not be possible until a direct hardware connection
between the NIC and GPU is available.

Figure 2. Temporal Misalignment between Figure 3. Temporal Alignment between
the GPU and NIC the GPU and NIC

Video Playout
The RTP timestamp of a playout frame is defined as the time point at which the first packet of
the frame is presented for transmission by the NIC and all packets constituting a frame have the
same timestamp. If the GPU processing is not synchronized to the video frame rate then the
video playout will exhibit jitter and/or lag as shown in Figure 4. GPU processing time must
consume less than a frame time to ensure GPU synchronization. The delta between successive
queries of the PTP time from the DPU time service should be equal to or less than the frame
rate of the transmit stream. When the frame time is exceeded, a duplicate frame may be
transmitted, or there may be a stutter in the ST 2110-20 stream depending upon the application.
Alignment of the frame on the outgoing transport stream is always guaranteed by the hardware
scheduling of the NIC with the RTC synced to PTP. Figure 5 illustrates smooth playout when the
GPU and NIC are in frame alignment.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 9

Figure 4. Jitter and/or Lag Resulting from. Figure 5. Temporal Alignment between

Misaligned GPU and NIC the GPU and NIC

Direct Data Transfer
In modern computer systems based upon the PCI Express (PCIe) architecture GPUs and NICs
function as endpoint devices on the PCIe switch fabric connected to a CPU and system memory
via a PCIe root complex.25 The root complex may contain multiple PCIe ports with directly
connected endpoints in addition to multiple switch devices connected directly or cascaded.
Each CPU, associated root complex, local host memory, PCIe switch fabric and endpoint
devices are commonly referred to as a Non-Uniform Memory Access (NUMA) node. In a system
with multiple CPUs or NUMA nodes they are inter-connected via Intel QuickPath Interconnect
(QPI)26 or HyperTransport (HT)27 as illustrated in Figure 6.

Figure 6. Multiple NUMA Nodes Connected via a QPI or HT Link
Traditional computer-based video capture or playout systems utilize GPUs to perform video
processing and NICs to perform the SMPTE ST 2110-20 video I/O. Video essence data moves
between the GPU and NIC PCIe endpoint devices via Direct Memory Access (DMA)
transactions to or from host memory. In this scenario, an application must allocate host memory
buffers for video I/O transfers to and from the NIC and GPU device memory for pre- and post-
processed frames and manage the two-step DMA transfer processes between the two memory
locations. In the case of video capture as shown in Figure 7, the NIC issues a memory write

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 10

request, the root complex receives and processes the request writing the data to host memory,
the GPU then issues a memory read request to fetch the data into GPU device memory. For
video playout, as shown in Figure 8, the GPU issues a write request, the root complex receives
and handles the request writing the processed video data into host memory. The NIC then
issues a PCIe read request to fetch the data for video transmission. This methodology is
typically referred to as peer-to-host-to-peer transfers.

Figure 7. Traditional Video Capture to Figure 8. Traditional Video Playout from
GPU Through System Memory GPU Through System Memory

In a Direct Data Transfer system, the GPU and NIC endpoint devices perform peer-to-peer DMA
transactions. In this case, the application needs to allocate only GPU device memory and
register this memory with the NIC device driver. For video capture as shown in Figure 9, the NIC
issues a write request directly to GPU device memory while for video playout in Figure 10, the
NIC issues a read request of video essence data directly from GPU device memory bypassing
the host memory. The PCIe switch on which both the GPU and NIC reside handles the PCIe
write and read requests for Direct Data Transfers.

Figure 9. Video Capture Directly Figure 10. Video Playout Directly
to GPU Device Memory from GPU Device Memory

Optimum performance of Direct Data Transfers is achieved when the GPU and NIC devices are
installed on the same PCIe switch device. In this case, the maximum realizable bandwidth can
be achieved between devices. When the devices are not installed on the same PCIe switch

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 11

device, but on different ports of the root complex, maximum performance cannot be achieved
because the root complex cannot efficiently handle peer-to-peer transactions. Furthermore,
when the GPU and NIC devices are attached to different NUMA nodes, data transfers fall back
to the traditional peer-to-host-peer methodology.
The benefits of Direct Data Transfer to a broadcast video processing or post-production
application include:

● 50% reduction in the number of PCIe bus transactions for each data transfer between
NIC and GPU.

● Reduction in host memory usage as payload essence data transferred directly to/from
the GPU without the need to allocate host staging buffers.

● Elimination of host memory bandwidth consumed by transfers to host staging buffers.
● Potential reduction in GPU usage previously used to DMA or copy the video essence

data from host memory.
● Reduction in the transfer latency between the NIC and GPU.

Flexible Data Conversion Between NIC and GPU
Core GPU-based image processing for creative as-well-as deep-learning applications requires
that the image essence is in an uncompressed planar format where each component (i.e. RGB
or YCbCr) is stored as an 8-bit integer (INT8) or normalized 16- or 32-bit floating-point (FP16 or
FP32) value. Meanwhile, the video essence is transmitted uncompressed in an ST 2110-20
stream where the integer color components are interleaved and packed into pgroups (an integer
number of octets or bytes that does not cross a packet boundary) or compressed in a format
such as JPEG XS28, H.264/AVC29 or H.265/HEVC30 in an ST 2110-22 stream. In addition,
colorspace conversions and other data transformations may be required between the video
input and output streams and the linear color processing of the GPU-based workflow. The
compute cores and on-board GPU codec hardware is utilized to convert the video essence to
and from the format required for GPU processing.
In the case of an uncompressed ST 2110-20 stream the GPU with 1000s of Single Instruction
Multiple Data (SIMD) compute cores and very high bandwidth (> 400 GB/sec) to local device
memory performs the required transformation instantly to all pixels in parallel. As a result, once
the video essence data arrives from the NIC into the GPU device memory, GPU processing
commences with an efficient transformation to the required internal application format prior to
processing. For transmission, the resulting video essence data is transformed back to the
required format. The unit of work is a pgroup. For example, common uncompressed 10-bit
YCbCr 4:2:2 video essence is transmitted in pgroups of 5 octets for each two pixels. For
efficient GPU processing, a conversion to normalized FP16-per-component RGB values in the
range [0.0 to 1.0f] is performed where each parallel compute thread converts the 5 octets to 2
pixels. The GPU can work on any number of pgroups and does not have to wait until a complete
frame is present in GPU device memory. This removes latency from the pipeline.
Separate from the GPU compute cores used for generic parallel processing, GPUs contain on-
board video codecs for common compressed formats. For ST 2110-22 streams, the onboard
GPU codec can be utilized to decode the incoming stream and re-encode the outgoing stream
prior to GPU processing if the stream compression is supported by the codec hardware.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 12

Otherwise, for other non-supported codecs, the GPU compute cores can be utilized to
implement all or some of the required codec processing. This flexible GPU processing pipeline
for both uncompressed and compressed video streams is illustrated in Figure 11.

Figure 11. GPU Processing Pipeline

Bringing It All Together With a Technology Demonstrator
As a technology demonstrator, “RivermaxDisplay” combines the technologies discussed above
to create an ST 2110 IP network-attached virtual display on the workstation desktop that can be
utilized as a standards-conformant high-quality video reference display in a post-production
workflow or for a live-to-air-application in a broadcast pipeline. High-quality color-accurate
frames for display by the Windows operating system display manager are rendered on the GPU
prior to transmission by the NIC as a SMPTE ST 2110-20 uncompressed video stream.
Accompanying audio data is transferred to the NIC for transmission as a SMPTE ST 2110-3031
stream. IEEE 1588-2008 Precision Time Protocol (PTP) as defined in SMPTE ST 2059-2 is
used for synchronization while industry-standard Session Description Protocol (SDP)32
manifests are used to set up the technology demonstrator media processing and transmission
pipeline. The system architecture is illustrated in Figure 12.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 13

Figure 12. Technology Demonstrator Architecture

Architecture
The Windows Display Driver receives the RGB pixel data of the rendered frame for the display
in GPU device memory. Prior to packetization and ultimately network transmission, the RGB
pixels are converted by the GPU from the native Windows operating system format to the
sampling, depth and colorspace specified for the outgoing video stream in the SDP manifest.
Taking advantage of header-data split feature, the final video essence pixels are then
transferred directly from GPU device memory to the NIC via Direct Data Transfer for
transmission as RTP packet payload on the created SMPTE ST 2110-20 stream while the
headers are transferred via DMA from host memory buffers.
Audio sample data is processed by a Windows virtual audio endpoint device.33 When this audio
device is selected in the operating system control panel to be the active audio device, the audio
endpoint receives the uncompressed 16- or 24-bit PCM audio samples in a host memory buffer.
The NIC then DMA’s this audio essence data as RTP packet payload along with the RTP
headers for network transmission in the SMPTE ST 2110-30 audio stream as specified in the
SDP manifest.

Synchronization
Integration of this technology demonstrator as a content generation node within an all-IP post-
production or broadcast facility requires the audio and video essence streams to be
synchronized via RTP timestamps aligned to the media clock as defined in SMPTE ST 2110-
1034. As a synthetically generated essence, the RTP timestamp of each video frame is the time
point at which the first video sample of the frame arrives at the NIC for transmission while for the
audio stream, the RTP timestamp is a sample of the audio RTP clock when the first audio
sample arrives at the NIC for transmission.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 14

Synchronization of the Windows GPU-rendered frames with the audio essence buffers within
technology demonstrator is performed by first mapping the Windows operating system
timestamps that accompany each rendered frame buffer and audio buffer to the PTP time. The
mapped PTP times are then used by the NIC to schedule the transmission of the ST 2110-20
and ST 2110-30 streams. The mapping function between the Windows system clock and the
PTP time returned from the DPU time service is updated periodically over a sequence of frames
by the time mapper. It is currently not possible in software to perform the required timer queries
and update the map with sufficient accuracy per frame to avoid jitter. These PTP time values
become the RTP timestamp inserted by the NIC into the corresponding packet headers. This
alignment of video and audio is illustrated in Figure 13.

Figure 13. Technology Demonstrator Video-Audio Synchronization

Conclusion
The technology advancements in COTS NICs provide a whole range of capabilities that are
applicable to offloading the host-based processing of high bandwidth flows such as those
encountered in ST 2110 systems. Additionally, the precise timing and packet scheduling
capabilities of the NIC ensures compliance with the strict ST 2110-21 model.

The Data Processing Unit is now the third pillar of the datacenter architecture alongside the
CPU and the GPU. In the context of this paper, we demonstrate how this new class of devices
enables a PTP timing platform to provide a highly accurate timing solution independently of the
host operating system fulfilling the ST 2110 timing requirements.
These capabilities combined with the flexible high-bandwidth parallel processing capabilities of
the GPU cores create an ideal real-time video processing system for broadcast and post-
production workflows. Furthermore, the Direct Data Transfer functionality optimizes the
essence transfer between the DPU and GPU to reduce system overhead and remove latency
from the video processing pipeline.
The technology demonstrator brings all these pieces together to create an ST 2110 IP network-
attached virtual display on the computer workstation desktop that can be utilized as either a
standards-conformant high-quality video reference display in a post-production workflow or as a

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 15

scan converter for sending a computer graphics desktop application live-to-air in a broadcast
pipeline.

References

1. "OV 2110-0:2018 - SMPTE Overview Document - Professional Media over Managed IP
Networks Roadmap for the 2110 Document Suite," in OV 2110-0:2018 , vol., no., pp.1-4,
24 Jan. 2019, doi: 10.5594/SMPTE.OV2110-0.2018.

2. "IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems," in IEEE Std 1588-2008 (Revision of IEEE Std
1588-2002) , vol., no., pp.1-269, 24 July 2008, doi: 10.1109/IEEESTD.2008.4579760.

3. "ST 2059-2:2021 - SMPTE Standard - SMPTE Profile for Use of IEEE-1588 Precision
Time Protocol in Professional Broadcast Applications," in ST 2059-2:2021 , vol., no.,
pp.1-22, 4 June 2021, doi: 10.5594/SMPTE.ST2059-2.2021.

4. Linux Kernel - Checksum Offloads
https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html

5. Linux Kernel - Segmentation Offloads
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

6. Microsoft - Introduction to Receive Side Scaling https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/introduction-to-receive-side-scaling

7. Microsoft - Offloading the Segementation of Large TCP Packets
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/offloading-the-
segmentation-of-large-tcp-packets

8. Microsoft - Receive Segment Coalescing (RSC) https://docs.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/hh997024(v=ws.11)

9. Microsoft - UDP Segmentation Offload (USO) https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/udp-segmentation-offload-uso-

10. Microsoft - Header-Data Split Architecture https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/header-data-split-architecture

11. NVIDIA Rivermax SDK https://developer.nvidia.com/networking/rivermax
12. "ST 2110-21:2017 - SMPTE Standard - Professional Media Over Managed IP

Networks: Traffic Shaping and Delivery Timing for Video," in ST 2110-21:2017 , vol.,
no., pp.1-17, 27 Nov. 2017, doi: 10.5594/SMPTE.ST2110-21.2017.

13. Kernen T., Vermost W.,”The art of conforming to SMPTE 2110-21 traffic model”,
Broadcast Engineering and Information Technology Conference (BEITC) Proceedings,
April 2018, Las Vegas

14. Kernen T., Vermost W., Kerö N. “Measurement methodology and real-world compliance
results for ST 2110-21 devices”, Broadcast Engineering and Information Technology
Conference (BEITC) Proceedings, April 2019, Las Vegas

http://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
http://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 16

15. PTP hardware clock infrastructure for Linux https://www.kernel.org/doc/html/latest/driver-
api/ptp.html

16. Kerö N., Kernen T., Using PTP for Time & Frequency in Broadcast Applications Part 1:
Introduction, EBU Technical Review March 2018,
https://tech.ebu.ch/docs/techreview/trev_2018-Q2_PTP_in_Broadcasting_Part_1.pdf

17. N. Kerö, T. Kernen and T. Müller, "Efficient Monitoring of ST2059-2 Based Time Transfer
Performance," in SMPTE Motion Imaging Journal, vol. 126, no. 4, pp. 1-8, May-June
2017, doi: 10.5594/JMI.2017.2680560.

18. T. Kernen and N. Kerö, "Monitoring and Analysis of SMPTE ST 2059-2 PTP Networks
and Media Devices," in SMPTE Motion Imaging Journal, vol. 130, no. 6, pp. 10-19, July
2021, doi: 10.5594/JMI.2021.3082992.

19. NVIDIA ConnectX-6Dx NIC https://www.nvidia.com/en-us/networking/ethernet/connectx-
6-dx/

20. Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. 2010. A
case for NUMA-aware contention management on multicore systems. In Proceedings of
the 19th international conference on Parallel architectures and compilation techniques
(PACT '10). Association for Computing Machinery, New York, NY, USA, 557–558. DOI:
10.1145/1854273.1854350

21. Insider preview - Windows Time service in Windows Server 2019
https://docs.microsoft.com/en-us/windows-server/networking/windows-time-
service/insider-preview

22. NVIDIA Bluefield Data Processing Unit https://www.nvidia.com/en-
us/networking/products/data-processing-unit/

23. "ST 2110-20:2017 - SMPTE Standard - Professional Media Over Managed IP Networks:
Uncompressed Active Video," in ST 2110-20:2017 , vol., no., pp.1-22, 27 Nov. 2017, doi:
10.5594/SMPTE.ST2110-20.2017.

24. "ST 2110-22:2019 - SMPTE Standard - Professional Media Over Managed IP Networks:
Constant Bit-Rate Compressed Video," in ST 2110-22:2019 , vol., no., pp.1-6, 14 Aug.
2019, doi: 10.5594/SMPTE.ST2110-22.2019.

25. Budruk, Ravi, An Introduction to PCI Express,
https://www.mindshare.com/files/resources/MindShare_Intro_to_PCIe.pdf.

26. Intel, An Introduction to the Intel QuickPath Interconnect,
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-
interconnect-introduction-paper.html

27. HyperTransport Consortium, Meeting the I/O Bandwidth Challenge: How HyperTransport
Technology Accelerates Performance in Key Applications,
https://www.techonline.com/wp-content/uploads/2020/09/media-1035173-
hypertransport_apps.pdf

28. JPEG XS (ISO/IEC 21122-1) Whitepaper, http://ds.jpeg.org/whitepapers/jpeg-xs-
whitepaper.pdf

http://www.kernel.org/doc/html/latest/driver-
http://www.nvidia.com/en-us/networking/ethernet/connectx-
http://www.nvidia.com/en-
http://www.mindshare.com/files/resources/MindShare_Intro_to_PCIe.pdf
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-
http://www.techonline.com/wp-content/uploads/2020/09/media-1035173-
http://ds.jpeg.org/whitepapers/jpeg-xs-

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 17

29. T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, "Overview of the H.264/AVC
video coding standard," in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560-576, July 2003, doi: 10.1109/TCSVT.2003.815165.

30. G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, "Overview of the High Efficiency Video
Coding (HEVC) Standard," in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012, doi:
10.1109/TCSVT.2012.2221191.

31. "ST 2110-30:2017 - SMPTE Standard - Professional Media Over Managed IP Networks:
PCM Digital Audio," in ST 2110-30:2017 , vol., no., pp.1-9, 27 Nov. 2017, doi:
10.5594/SMPTE.ST2110-30.2017.

32. Internet Engineering Task Force (IETF), 2006. RFC 4566 SDP: Session Description
Protocol, https://www.ietf.org/rfc/rfc4566.txt

33. Microsoft - Universal Windows Drivers for Audio, https://docs.microsoft.com/en-
us/windows-hardware/drivers/audio/audio-universal-drivers

34. "ST 2110-10:2017 - SMPTE Standard - Professional Media Over Managed IP Networks:
System Timing and Definitions," in ST 2110-10:2017 , vol., no., pp.1-17, 27 Nov. 2017,
doi: 10.5594/SMPTE.ST2110-10.2017.

http://www.ietf.org/rfc/rfc4566.txt

	Introduction
	ST 2110 & COTS Network Adapters
	Timing and pacing constraints in ST 2110-21

	Timing as a Service (DPU)
	What is a DPU?
	Challenges in delivering consistent timing across hosts
	Delivering timing with a DPU

	Syncing GPU from PTP service
	Video Capture
	Video Playout

	Direct Data Transfer
	Flexible Data Conversion Between NIC and GPU
	Bringing It All Together With a Technology Demonstrator
	Architecture
	Synchronization

	Conclusion
	References

