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Abstract – Reducing end-to-end streaming latency is critical to HTTP-based live video streaming. There are 
currently two technologies in this domain: Low-Latency HLS (LL-HLS) and Low-Latency DASH (LL-DASH). The 
latter is sometimes also referred to as Low-Latency CMAF (LL-CM.AF), but effectively it is the same architecture. 
Several existing implementations of streaming players, as well as encoding and packaging tools, support both 
technologies. Well-known examples include Apple's AVplayer, Shaka player, HLS.js, DASH.js, FFmpeg, etc.  
In this paper, we conduct a performance analysis of such streaming systems. We perform a series of live streaming 
experiments, repeated using identical video content, encoders, encoding profiles, and network conditions, emulated 
by using traces of real-world networks. We capture several performance metrics, such as average stream bitrate, 
the amounts of downloaded media data, streaming latency, buffering, frequency of stream switching, etc. 
Subsequently, we analyze the captured data and describe the observed differences in the performance of LL-HLS 
and LL-DASH-based systems.  

Introduction 
In the past few years, the video streaming industry has seen immense interest in Low-Latency streaming protocols, 
targeting about 5 seconds end-to-end delay, comparable with the delay in live broadcast TV systems. Attaining 
such low delay is considered critical for streaming live sports, gaming, online learning, interactive video applications, 
etc.  

As well known, the delay in the conventional live streaming technologies such as HLS [1] and DASH [2] is much 
longer. It is caused by relatively long (4-10 seconds) segments and a segment-based delivery model, requiring 
complete delivery of each media segment before playback. Combined with buffering strategies used by the HLS or 
DASH streaming clients, this typically produces delays of 10 to 30sec, or even longer. 

Low-Latency HLS (LL-HLS) [3,4] and Low-Latency DASH (LL-DASH) [2,5,6] are the recent evolutions of the 
HLS and DASH standards, designed to reduce the latency. They employ a new encoding and transmission process, 
effectively splitting each segment into several (typically 4-10) chunks and then using such "chunks" for transmission. 
Since each "chunk" is significantly shorter than a segment, this reduces the delay in the streaming system.  

Several existing implementations of streaming players, encoding and packaging tools support LL-DASH and 
LL-HLS technologies. The available player implementations include Apple's AVPlayer [7], HLS.js [8], Shaka player 
[9], DASH.js [10], as well modifications of DASH.js, including machine learning-based adaptation methods such as 
LoL [11] and L2All [12]. The available encoding and packaging tools include Apple's HLS reference tools [13], 
FFmpeg [14], node-gpac-dash [15], and others. Many of these technologies have demonstrated lower streaming 
delay and promising performance when operated over high-speed network connections or tested using simple in-
browser bandwidth throttling tools [11,12].  However, the actual performance of such systems under more 
challenging and more realistic deployment environments has not (to the best of authors' knowledge) been well-
studied yet. 

This paper aims to perform a practical evaluation and comparison of such available implementations of LL-HLS 
and LL-DASH players and systems in more realistic and challenging environments, such as delivery over mobile 
networks.  

Related Work and Adopted Evaluation Methodology  
The operation under unknown or changing network conditions has been one of the most fundamental challenges 
that adaptive bitrate streaming systems have been trying to solve since their birth in the 1990s [16-18]. This 
challenge still exists today, although in a somewhat simplified setting, allowed by using HTTP-based Adaptive 
Streaming (HAS) architectures [1-3,19]. In such architectures, the network adaptation logic resides in streaming 
clients, effectively driving the selection and loading of segments of media streams.  



In the past decade, many methods have been proposed for the design of stream selection algorithms. These 
include throughput-based methods [20-21], buffer-level-based heuristics [22-25], control-theoretic approaches [26-
27], as well as machine-learning algorithms [11-12]. However, the methodologies used by different researchers for 
comparison of such bandwidth adaptation algorithms have varied, and in some cases, employed very basic 
bandwidth throttling tools in web browsers. Such tools can only control video players' download bandwidth at the 
application layer and have no means for accurately simulating highly fluctuating network bandwidth changes or 
packet loss statistics present, for example, in mobile networks. 

References [28-33] proposed testbeds/frameworks for evaluating video streaming QoE using real networks or 
fine-controlled network links to evaluate HAS systems. For instance, Talon et al. [28] have implemented several 
HAS players and assessed them in a campus network from different performance perspectives. Ayad et al. [31] 
took a similar approach and conducted a practical and in-depth evaluation of HAS players. Notably, the authors of 
[31] have built an experimental framework emulating wired network links using Netem and Linux Traffic Control 
(TC). Their experiments and code-level analysis revealed how different HAS players operate in detail. This study 
was limited to the use of wired networks, however. References [32-34] have proposed a framework for automating 
video streaming testing and QoE evaluation. The framework integrates with the Mobile Broadband Networks in 
Europe (MONROE) project. The players run in docker containers with managed network connections and the 
environment metadata collection functionalities built into MONROE nodes. The framework enables running 
experiments on a cloud infrastructure. These proposed frameworks, however, focus more on automation and 
simplification of player evaluation, but they do not ensure a fair comparison of different players because there is no 
guarantee that different players experience the same network conditions. Raca et al. [30] have proposed DASHbed, 
a framework for simulating large-scale empirical evaluation of DASH players. However, the mobile network traces 
it relies upon [35] have limited sampling granularity and thus don't capture the essential fine-grain dynamics of such 
networks. 

To ensure a more accurate and fair evaluation of different players, in this paper, we introduce a custom-built 
evaluation framework incorporating the Mahimahi network emulator [43-46]. Our framework guarantees a fair 
comparison of different players by replaying the same network traces across playback sessions. Such an approach 
allows us to compare multiple players side by side under the same network condition. The Mahimahi network 
simulator can accurately emulate mobile network links using the physical network traces recorded from different 
mobile operators. Specifically, we will use network traces from T-Mobile and Verizon 4G LTE networks [43].  

Experiment Setup  
In this section, we describe the overall setup of our experiments, including encoding and packaging tool-chains, the  

The overall diagrams of our systems built for LL-HLS and LL-DASH streaming appear in the left and right sub-
figures of Figure 1. To generate LL-HLS streams, we used Apple's HLS reference tools [13] and FFmpeg [14]. To 
generate LL-DASH streams we used OBS studio [47], FFmpeg [14], and node-gpac-dash [15]. Additional details 
about our setups can be found in [48-49]. The LL-HLS stream was served dynamically by the NGINX web server 
[50]. The LL-DASH stream was served dynamically by node-gpac-dash [15].  

 

        
 

FIGURE 1: ARCHITECTURES LL-HLS (LEFT) AND LL-DASH (RIGHT) STREAMING SYSTEMS USED FOR TESTING. 
 

As shown in Figure 1, the encoded input video streams are subsequently processed by the low-latency 
packagers (mediastreamsegmenter [13] for LL-HLS, and FFmpeg [14] for LL-DASH). The outputs of low-latency 
packagers are the chunked video segments and manifest files informing the players on how to consume the streams 



in low-latency mode. Next, the output stream files are served by the low-latency media servers (lowLatencyHLS.php 
[13] for LL-HLS, node-gpac-dash [15] for LL-DASH) to players in a chunked manner. On the player side, the web-
based players run on the Chrome web browser, and the iOS native player (HLS) runs on the AVPlayer framework 
on iOS. The Chrome browser and the AVPlayer run inside the Mahimahi container [43] and connect to the media 
server via an emulated virtual network interface.  

As a test video sequence, we used a 1080p version of the Big Buck Bunny video [51]. This sequence was 
looped to enable continuous testing. For streaming, 3 live transcoded variant streams have been subsequently 
generated, with parameters listed in Table 1.  
 

Parameter Rendition 1 Rendition 2 Rendition 3 
Bitrate (kbps) 279 925 1253 
Frame rate (fps) 30 30 30 
Video resolution (pixels) 320x180 640x360 768x432 
Seg. duration (sec) 4 4 4 
Chunk duration (sec) 1 1 1 
Video codec H.264 H.264 H.264 
Video codec profile Baseline Baseline Baseline 
Media format ISOBMFF ISOBMFF ISOBMFF 

 
TABLE 1: ENCODING PROFILE PARAMETERS USED FOR BOTH LL-HLS AND LL-DASH SYSTEMS. 

 
To minimize fluctuations of encoding bitrates from their declared targets, constant bitrate (CBR) encoding mode 

has been utilized. H.264 encoder operating in Baseline profile has been used. Lookahead processing disabled. The 
segment lengths and fragment durations were set to 4 sec and 1 sec, respectively, matching the default values 
used in Apple's streaming tools for LL-HLS [13]. The same encoding parameters have been used for the generation 
of both LL-DASH and LL-HLS streams. 

The overall session duration that we used to test each player's performance under each network was 10 
minutes. Given selected chunk and fragment durations, this has allowed about 600 chunks or equivalently 150 
segments to be downloaded per session. 

We have evaluated 6 implementations of low-latency streaming players. For LL-HLS, we used Apple's AVPlayer 
[7], HLS.js [8], and Shaka player [9]. For LL-DASH, we used Dash.js with three different low-latency ABR algorithms: 
Dash.js original [10], Dash.js with LoL algorithm [11], and Dash.js with L2All algorithm [12]. We have implemented 
simple test applications for all the players. The applications were built using the latest player SDK releases as 
available in December 2020. 

The reporting of metrics indicative of live streaming latency, playback speed, and re-buffering events has been 
instrumented in the video player applications.  Other metrics such as stream bitrate, video resolution, and media 
data downloaded have been derived from the streaming servers' access logs. The processing of all collected metrics 
was done offline.  

The player's streaming latency was calculated by following the method described in [6], which is common for 
both LL-DASH and LL-HLS. Essentially, at any time point, we take the difference between the elapsed presentation 
time and the elapsed wall clock time, from the beginning of a streaming session: 

𝑃𝑃𝑃𝑃 =  (𝑊𝑊𝑊𝑊 –  𝑊𝑊𝑊𝑊𝑊𝑊)  −  (𝑃𝑃𝑃𝑃 –  𝑃𝑃𝑃𝑃𝑃𝑃)/𝑇𝑇𝑇𝑇                                                                 (1) 
where PL represents the live Presentation Latency, WC and PT represent the current Wall Clock time and the 
current Presentation Time, respectively. WCA and PTA represent the beginning wall clock time and the beginning 
presentation time, respectively. For LL-DASH, the above values have been obtained from the 
ProducerReferenceTime [6] element embedded in an MPD file, and W3C HTML5 video currentTime API [52], and/or 
a DASH MPD file. For LL-HLS, these values have been derived from the HLS m3u8 file and currentTime API.  

The number of re-buffering events and the players' playback speed has been obtained by using the waiting 
event API [52] and the playbackRate API [52] respectively.  

The playback speed variation was calculated as the Euclidean distance of all the measured playback speeds 
relative to the native speed (which equals 1): 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1
𝑛𝑛
�∑𝑖𝑖=1𝑁𝑁 (𝑠𝑠𝑖𝑖 − 1)2                                                          (2) 

The parameter N used in this formula denotes the number of playback speed measurements conducted during 
the session. All other metrics including stream bitrate, video resolution, media data downloaded, number of bitrate 
switches have been derived from the server logs. The full list of metrics collected in our test system is summarized 
in Table 2. 
 



Metrics  Impact domain(s) 
Streaming bitrate (kbps) Efficiency, QoE 
Video resolution (height) QoE 
Streaming latency (sec) Latency, QoE 
Variation of playback speed  QoE 
Frequency of stream switches QoE 
Frequency of rebuffering events QoE 
Downloaded media data (Mbytes) Efficiency 
Media objects (chunks or segments) downloaded Efficiency 

 
TABLE 2: PERFORMANCE METRICS COLLECTED IN OUR EXPERIMENTS. 

 
We used the Mahimahi network emulator [43] to emulate network conditions at the network interface level. 

Mahimahi is essentially a Linux container that can run an application inside of it. An application inside Mahimahi 
connects to the outside world through a virtual network interface that sends and receives bytes according to the 
running downlink and uplink traces. This way, the capacity of the network interface is limited by the running trace. 
We used traces that have been recorded from real-world mobile networks. When we run the test players inside 
Mahimahi, the player download speed is limited by the capacity of the virtual interface. Unlike using bandwidth 
throttling features in web browsers, Mahimahi provides more faithful network emulation by using real-world traces 
and throttling bandwidth at the network interface level. Additionally, the same network traces are replayed for all the 
test sessions. This allows a fair and realistic comparison of different players.  

We have evaluated LL-HLS and LL-DASH players using two 4G-LTE network traces from T-Mobile and Verizon 
respectively [43]. We provide visualizations of these traces in Figure 3. In Table 3 we list several basic statistics 
associated with them.  
 

Bandwidth statistics   T-Mobile     Verizon   
Average bitrate (kbps) 1607.43 1323.97 
St. deviation of bitrate (kbps)   1147.60 1075.80 
Minimum bitrate (kbps) 148.5 1.178 
Maximum bitrate (kbps) 7545 5433 

 
TABLE 3: BANDWIDTH STATISTICS OF NETWORK TRACES USED FOR TESTS. 

 

 
 

FIGURE 3: VISUALIZATIONS OF NETWORK BANDWIDTH TRACES USED FOR TESTS. 
 
We note that the traces that we have selected for testing are pretty challenging, capturing situations with mobile 

handoffs and other forms of impairments that may happen in practice. In fact, with the selected traces, we should 
expect streaming players to enter in a buffering state at least once or twice throughout the session. On the other 
hand, we also note that the effective average bitrate supported by both networks is higher than the bitrate used by 
the top rendition in our encoding profiles. This should enable players to use all renditions for network adaptation.  

The Results 
In this section, we present the results of our tests of LL-DASH and LL-HLS systems using different networks. 



Results for Tests using Verizon 4G LTE Network 
First, we review the results obtained by using traces of the Verizon 4G LTE network. Table 4 offers summary 
metrics. Figure 4 shows the dynamics of bitrate changes in LL-HLS and LL-DASH systems. Figure 5 shows 
dynamics of playback latencies achieved by both systems.  
 

Metrics LL-HLS players LL-DASH players 
HLS.js Shaka AVplayer DASH.js LoL L2All 

Avg. bitrate (kbps) 849 1228 1136 1165 595 1073 
Avg. height (pixels)  328 426 404 410 262 387 
Avg. latency (secs) 4.32 7.28 15.96 3.71 3.2 3.9 
Var. playback speed  3.97 0 0 0.19 0.39 0.44 
# of switches 48 2 130 6 29 3 
# of rebufferings 36 12 2 5 79 56 
Downloaded MBs 85 90 99 88 45 81 
Downloaded objects  
(chunks + segments)  

673  
(662+11) 

587  
(587+0) 

669  
(611+58) 

152 151 152 

 
TABLE 4: SUMMARY OF PERFORMANCE METRICS OBTAINED FOR VERIZON 4G LTE NETWORK. 

 

     
 

FIGURE 4: BITRATE VARIATION OVER TIME – VERIZON 4G LTE. 
 

     
 

FIGURE 5: LATENCY VARIATION OVER TIME – VERIZON 4G LTE. 
 

Based on Table 4 and Figure 5, we first note that the latencies achieved by LL-DASH players and their variations 
were considerably lower than ones achieved by LL-HLS. Except for a couple of segments where bandwidth drops 
significantly, the latencies of LL-DASH players have been in the range of 3-4 sec. Among LL-HLS players, only 
Shaka player was able to stay at latency in the range of 7-9 sec. The HLS.js has also tried to keep latency low, but 
run in a large number of buffering events as a result. The AVplayer's behavior was interesting: it starter to operate 
in about 4-seconds latency mode, but then, by the middle of the session, it increased latency to 12 sec, and the 
increased it again to 16 sec, and never recovered to low-latency mode.  

In terms of playback stability / prevention of rebuffering events, we noted that AVplayer was most robust among 
LL-HLS players, and DASH.js among LL-DASH players. AVplayer buffered only 2 times, while DASH.js buffered 5 



times. But we also noticed that many players have been switching across streams very often. E.g., AVplayer has 
made 130 switches in 600sec – long session. A switch at almost every segment boundary.   

In terms of data usage and the ability to deliver high-resolution videos, we noted that DASH.js was the best 
among LL-DASH systems, and Shaka player was best among LL-HLS. AVplayer was a close next. The average 
consumed bitrate and resolutions delivered by best players for LL-HLS and LL-DASH systems was comparable. 
But we also noted the number of objects (chunks or whole segments) downloaded by LL-HLS systems was 
significantly higher than in LL-DASH. This relates to the differences in implementation of transfer protocols 
employed by both systems.  
 

Results for Tests using T-Mobile 4G LTE Network 
First, we review the results obtained by using traces of the T-Mobile 4G LTE network. Table 5 offers summary 
metrics. Figure 6 shows the dynamics of bitrate changes in LL-HLS and LL-DASH systems. Figure 7 shows 
dynamics of playback latencies achieved by both systems.  
 

Metrics LL-HLS players LL-DASH players 
HLS.js Shaka AVplayer DASH.js LoL L2All 

Avg. bitrate (kbps) 783 1043 1037 1225 537 1251 
Avg. height (pixels)  311 378 378 426 248 432 
Avg. latency (secs) 5.82 4.48 7.78 3.06 1.78 2.28 
Var. playback speed  3.62 0 0 0.23 1.62 0.42 
# of switches 50 8 72 4 28 0 
# of rebufferings 43 18 1 1 69 13 
Downloaded MBs 156 81 92 93 42 94 
Downloaded objects  
(chunks + segments)  

965 
(743+222) 

621 
(621+0) 

703 
(698 +5) 

151 152 151 

 
TABLE 5: SUMMARY OF PERFORMANCE METRICS OBTAINED FOR T-MOBILE 4G LTE NETWORK. 

 

   
 

FIGURE 6: BITRATE VARIATION OVER TIME – T-MOBILE 4G LTE. 
 

   
 

FIGURE 7: LATENCY VARIATION OVER TIME – T-MOBILE 4G LTE. 



In the above table and plots, we notice many of the same effects as we reported earlier. LL-DASH players 
deliver lower latency, with much lover variation among player implementations. The AVplayer starts in low-latency 
mode but then increases latency by the end of the session. The AVplayer and DASH.js are best in terms of buffering. 
While overall network conditions, in this case, appear to be better, most players still perform a high number of 
switches and run into at least one buffering situation. The observations regarding data loads are the same as 
reported earlier.  

Conclusions 
In this study, we have evaluated the LL-HLS and LL-DASH streaming systems under identical network conditions 
and by using several available implementations of streaming players for both systems.  

Based on our experiments, we've confirmed that both LL-HLS and LL-DASH can deliver significantly lower 
latencies compared to the traditional HLS and DASH streaming systems. Specifically, for LL-DASH players, we've 
observed latencies in the range of 3-4 seconds, except for a few segments when bandwidth was insufficient to 
maintain live playback. For LL-HLS players, we have observed a broader variation in streaming latencies across 
different player implementations, but with most data points fitting in the 4-10 second range.  

However, we have also noticed that in trying to maintain such a low delay, both LL-DASH and LL-HLS players 
frequently make decisions impacting the QoE in many other dimensions. Such observed effects include: 

• high stream switching and buffering rates, 
• the inability of some players to select high renditions, 
• the inability of some players to maintain playback speed,  
• more requests sent to the CDNs (particularly for LL-HLS), 
• the inability of some players to maintain low delay, etc. 
Based on these observations, we believe that while promising, both LL-HLS and LL-DASH systems still have 

some room for improvements. Especially when operating under challenging network conditions, such as mobile 
networks with significant load, handoffs, poor connectivity, and other effects occurring in practice. What is needed 
the most is additional tuning of the player's ABR rate selection algorithms. They need to made more robust. 
However, with much work in this direction already ongoing, including trying advanced machine-learning-based rate 
selection techniques (see e.g. [10-12]), we hope that these technologies will soon mature and will be ready for 
deployment at scale.   
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