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Abstract. Traditional Video-over-IP implementations in software either result in higher latency due to 
the processing time required for compression, or in high bandwidth required when transmitted as an 
uncompressed stream. With UHD-1 and UHD-2 video, this is even more of a challenge, as the 
uncompressed stream requires high-performance Ethernet networks or dedicated hardware 
implementing the compression. In some cases however, a software implementation and standard 
COTS equipment are beneficial to allow higher flexibility. With JPEG XS, a mezzanine compression 
codec was developed that can also be implemented as an ultra-low latency system in software. 
However, special attention must be paid how the data for processing is distributed across multiple 
threads, how large the number of threads is, in order to achieve optimal latency. Using a case study 
for UHD-1 Video-over-IP, this paper explains how such a system can be implemented with COTS 
components, which software architecture is necessary and how far the latency can be reduced. 

Keywords. Video over IP; Compression; Ultra-low latency; Software defined codec; JPEG-XS; 
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Takeaways. 

• Video over IP systems with software compression can have a very low latency  
• Multi-threading for compression allows adaptation to target processor 
• JPEG XS can guarantee CBR and a balanced load on the line 
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Introduction 
In recent years, video production facilities have moved from SDI lines to IP-based networks. This 
enables a higher flexibility in the workflow and the connection between devices, allowing also to 
directly connect workflows to cloud services. To preserve this high flexibility COTS equipment 
and software-based workflows are recommended. 
The challenge of using Video-over-IP in combination with COTS equipment and software-based 
workflows is to ensure low latency along with high throughput in software-based compression 
engines. This is especially important for live productions, where monitoring, control and remote 
operations are taken place. As long as the data pipeline is not completely switched to IP-based 
workflow, also hybrid systems with SDI input, output and IP transmission have to be considered 
that add additional delays to the workflow. In this paper, we cover both challenges, the switch 
between hybrid workflows and the latency of software based compression systems. 

JPEG XS as new mezzanine codec 
With JPEG XS a tailored new mezzanine image codec was standardized at ISO [1] that allows an 
algorithmic latency of typically 16 lines during encoding or decoding, in some special modes even 
lower. In real world this latency can be realized with special hardware implementations (ASIC, 
FPGA), but such approaches eliminate the advantage of using standard computer equipment.  
The low algorithmic latency of JPEG XS in general is achieved by an asymmetrical wavelet 
transformation and a “rolling buffer” rate allocation with a limited look-ahead window. For software 
implementations, however, such a design alone is not sufficient as it defines essentially a serial 
codec that is unable to achieve the throughput for UHD-1 or UHD-2 images. Thus, the architecture 
requires additional refinement to allow parallelization. Luckely, JPEG XS is an inherently parallel 
design as it allows splitting the source images after the wavelet transform into slices of 16 lines 
high and calculating the rate distortion for these slice independently. A more detailed explanation 
of the features and operation of JPEG XS can be found in [3].  
For this paper, it is important to note that slices can be processed independently by individual 
software threads. Taking an UHD-1 video (3840x2160 Pixel) as example, the image can be 
splitted into 2160/16 = 135 slices. In order to avoid a high level of administration effort due to the 
thread management, several consecutive slices can be combined into slicegroups that are 
processed by the same thread, thereby reducing the number of threads. This paper explains the 
right balance between number of slices in a slicegroup, the number of threads and related latency. 

Case Study Setup 
For this case study, we use a typical setup with components integrated in servers for a video 
processing pipeline.  
Figure 1 shows the typical standard design for a software based processing pipeline.  

• A video source generates a video stream on a SDI interface.  
• Server 1 is equipped with a SDI capture card and a 10GbE Ethernet interface at the ouput. 

The data transfer for IP transmission is based on RTP packets with RFC 9134 [6] and 
SMPTE ST 2110-22 [4]. Inside there will be some video processing and encoding to further 
transmit the data to the next processing node. As we only want to evaluate the I/O and 
coding latencies, the video processing unit is omitted. 

• The reverse happens at Server 2: data are received on an IP interface, decoded and then 
output via an SDI playout card. 
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Figure 1. Typical I/O pipeline for video processing 

In a first step (Design 1) we calculate the latency using previous I/O cards and a sequential 
processing, in a second step we propose a new design (Design 2) with recent I/O cards and a 
staggered processing pipeline. 

Design 1 (Standard design) 
The typical operation is frame based and sequential (Figure 2) [2]. That means, the SDI input card 
captures first one complete video frame before a data transfer to the PC memory is initiated. The 
data transfer is typically done via Direct Memory Transfer (DMA) methods. For a UHD-1 image 
the data transfer on a PCIe 2.0 x8 interface can last up to a third of a frame at 60Hz. Then an 
encoding is initiated, which can also last up to one frame dependent on the performance of the 
computer. It cannot last longer as otherwise the thoughput of the server is not sufficient. At the 
end of the data processing in server 1, the data are packetized and sent over an IP stack on the 
Ethernet interface to the network. The overall latency is about 5 frames. 
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Figure 2. Dataflow and timing in Design 1 

 

 
 
The latencies are summarized in table 1: 
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Orign Source Delay 

SDI Capture Card Framebuffer filled before DMA 
transfer is initiated 

≈1 frame 

DMA transfer to PC 
memory 

Data per UHD-1 frame: 20MByte 
Example:  
BMD Decklink 4k extreme 12G 
PCIe 2.0x8 theoretical 4GByte/s  

Frame duration @ 60p: 16,6ms 
Transfer time min:  
20/4000s = 5ms 
≈1/3 frame 

Frame based encoding Multi-threading, depend on 
performance of computer 

< 1frame 

IP transmission Data collecting, Packetizing, Traffic 
Shaping 

≈1/8 frame  

IP-Network Transport, Routing 
Depend on distance 

Very low in LAN 

IP reception Packet collecting, Sorting, 
Data Buffer filling 

≈1/8 frame + 1 frame due to traffic 
shaping on sender side 

Frame based Decoding Multi-threading, depend on 
performance of computer 

< 1frame 

DMA transfer from PC 
memory to SDI card 

Same as capture card ≈1/3 frame 

Sync at output Waiting for frame sync <1 frame 

Table 1. Latencies in Standard Design 

Design 2 (Ultra low latency Design) 
As mentioned before, JPEG XS has the concept of slice based processing, with slices being 
coded independently of each other. This can be used for parallelized coding and decoding of 
the image [5]. For an ultra-low latency design, the SDI input and output cards should allow 
subframe DMA transfers. A subframe is ideally an integer number of slices, e.g. 3 slices with 
3*16=48 lines. This allows transferring first lines (e.g. one slicegroup with three slices) to the PC 
memory while capturing the rest of the frame.  
A first encoding thread (Thread 1) can start if the first two slicegroups were transferred to the 
PC memory. The next thread (Thread 2) can be started after the next DMA transfer is finished 
and so on. After the first slicegroup is coded by Thread 1 it can be packetized and sent to the IP 
interface. One or more separate threads for IP interface handling allow parallel working of 
encoding and transmission. This realizes a kind of data waterfall concept or staggered design. 
Note: Some encoding threads can be faster than others and may finish their work head of time, 
even if started later. If an ordered transport of packets is desired, a synchronization point or data 
reordering has to be established for the packetizing, data transmission and traffic shaping to the 
IP interface. The JPEG XS RTP interface allows, however, also out-of-order transport that puts 
the burden of re-assembling the data stream in order to the receiver. This is possible as JPEG 
XS RTP packets carry in their header their target designation in the bitstream. 
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Figure 3. Dataflow and timing in staggered design 

 
Latencies can be calculated as defined in table 2 (example with slicegroup of three slices): 

Orign Source Delay 

SDI Capture Card Two slicegroups before DMA transfer 
starts 

Lines received/total lines/fps= 
2*48/2250/60s = 0,71ms 

DMA transfer to PC 
memory 

Data per slicegroup: 460kByte 
Example:  
Deltacast 12G 
PCIe 3.0x8 theoretical 7,8GByte/s  

Transfer time min:  
0.461/7800s = 0,06ms 
 

Slicegroup based 
encoding 

Per Slicegroup at 2bpp target rate 
Example:  
AMD Threadripper 3970X (3.7GHz) 

Average Encoding time per 
slicegroup: 1,72ms 

IP transmission Data collecting, Packetizing, Traffic 
Shaping 

 

IP-Network Transport, Routing 
Depend on distance 

Depends on transmission channel, 
very low in LAN 

IP reception Packet collecting, Sorting, 
Data Buffer filling 

 

Slicegroup based 
decoding 

Per Slicegroup at 2bpp target rate 
Example:  
AMD Threadripper 3970X (3.7GHz) 

Average Decoding time per 
slicegroup: 1,15ms 

DMA transfer from PC 
memory to SDI card 

Same as capture card Transfer time min:  
0.461/7800s = 0,06ms 

Sync at output Waiting for frame sync <1 frame 

Table 2. Latencies in Staggered Design 
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The delay from the SDI input to the decoder output without IP handling can be added up to: 
0,71ms+0,06ms+1,72ms+1,15ms+0,06ms= 3,7ms which offers enough reserve for the IP 
Handling and the synchronization up to the next frame. 

Experimental results 
Performance tests were executed on an AMD Threadripper 3970X to calculate the average 
throughput per core for encoding and decoding. 
For the Fraunhofer JPEG XS SDK 4.1 this ended up in the following values: 

AMD Threadripper                           per core with virtual 1 GHz  
Average coding time per slice in ms for 422 content 

type tencoding (ms) tdecoding (ms) NumberSlices 
2160p/2bpp 2,122 1,411 135 
2160p/3bpp 2,384 1,688 135 
2160p/4bpp 2,534 1,916 135 

Table 3. Processing times forJPEG XS (Fraunhofer SDK4.1) 
A calculation shows that one core on an AMD Threadripper with 3.7Ghz clock needs a 
processing time per slice for 2bpp target rate of 2.122ms/3.7(GHz)=574us, for decoding 
1.411ms/3.7(GHz)=382us. Compared to the input data rate on a 12G-SDI interface 
(16/2250/60s=118us), this results in a processing factor to real-time uncompressed 
transmission of 574/118 = 4.9 for encoding and 382/118=3.3 for decoding. 
Put in another way, more than 5 cores should be used for encoding of UHD-1 content to 2bpp 
and more than 4 cores for decoding. These are optimal values, in real systems enough 
headroom should be given for processing. With three slices per slicegroup 45 threads have to 
be processed for a UHD-1 image. By pinning multiple threads to the same core (in the example 
with 9 processing cores), e.g. Thread 1, 10, 19, 28, 37 to Core 1; Thread 2, 11, 20, 29, 38 to 
Core 2 and so on, a good load balancing can be achieved. 

Implementation 
Fraunhofer implemented a ULL JPEG XS system based on the above principles, using AMD 
threadrippers for both encoding and decoding. Source material is currently generated by a UHD 
camera. To ensure proper synchronization of encoder and decoder, a clock generator creates a 
tri-level sync signal the camera and the decoder genlocks to. JPEG XS implementations at 
encoder and decoder use both a single slice per slicegroup, and utilize 16 threads both for 
encoding and decoding. This design ensures lowest possible latency as each slice is processed 
by its own processor core, though creates some additional overhead due to the overlapping 
wavelet transformation. For transport, an out-of-order RTP based JPEG XS stream is used, 
following the latest IETF specification. That is, encoder threads push encoded data out to the 
network as soon as it becomes available, and the decoder needs to re-assemble the packets in 
proper order. 
As the decoder needs to run behind the encoder, an additional delay is added to the received 
tri-level sync signal and the start of frame generated by the play-out card. It is easy to see that 
this delay must be at least as large as the end-to-end (encoder-in to decoder-out)  latency.  
Measurements with an IP analyzer (Tektronic prism) showed that this system reaches an end-
to-end latency of 180 lines. 
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Conclusion 
We prototyped a UHD-1 JPEG-XS software-based ultra-low latency system. By careful design 
and allocating of processing threads on a multicore CPU, latencies far below 1 frame  can be 
achieved.  
This can be realized by splitting the workload on a slice or slicegroup granularity to multiple 
threads. The number of threads and the latency can be adapted to the available number of CPU 
cores and the performance per core.  
For the data transfer on the IP network, a slice based packaging and out-of-order transmission 
was choosen. This enables direct packaging in IP packets and immediate dispatch after the 
encoding task is completed. At the receiver side, the slices will be reordered and ingested into 
the image frame. 
As a result, in a synchronized system (with a frame synchronizer on the output of the decoder), 
one frame delay between input and output of the transmission chain is achievable. 
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