
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE Board
of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE: Author's Last
Name, Initials. 2020. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission to reprint or
reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (445 Hamilton Ave., White Plains, NY
10601).

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®)

Software defined ultra-low latency Video-over-IP
system with compression

Siegfried Foessel, Thomas Richter
Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Germany

Written for presentation at the
SMPTE 2021 Annual Technical Conference & Exhibition

Abstract. Traditional Video-over-IP implementations in software either result in higher latency due to
the processing time required for compression, or in high bandwidth required when transmitted as an
uncompressed stream. With UHD-1 and UHD-2 video, this is even more of a challenge, as the
uncompressed stream requires high-performance Ethernet networks or dedicated hardware
implementing the compression. In some cases however, a software implementation and standard
COTS equipment are beneficial to allow higher flexibility. With JPEG XS, a mezzanine compression
codec was developed that can also be implemented as an ultra-low latency system in software.
However, special attention must be paid how the data for processing is distributed across multiple
threads, how large the number of threads is, in order to achieve optimal latency. Using a case study
for UHD-1 Video-over-IP, this paper explains how such a system can be implemented with COTS
components, which software architecture is necessary and how far the latency can be reduced.

Keywords. Video over IP; Compression; Ultra-low latency; Software defined codec; JPEG-XS;
SMPTE ST 2110; 10GbE

Takeaways.

• Video over IP systems with software compression can have a very low latency
• Multi-threading for compression allows adaptation to target processor
• JPEG XS can guarantee CBR and a balanced load on the line

Type of paper. Case Study
Target audience. Senior Managers, Engineers

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 2

Introduction
In recent years, video production facilities have moved from SDI lines to IP-based networks. This
enables a higher flexibility in the workflow and the connection between devices, allowing also to
directly connect workflows to cloud services. To preserve this high flexibility COTS equipment
and software-based workflows are recommended.
The challenge of using Video-over-IP in combination with COTS equipment and software-based
workflows is to ensure low latency along with high throughput in software-based compression
engines. This is especially important for live productions, where monitoring, control and remote
operations are taken place. As long as the data pipeline is not completely switched to IP-based
workflow, also hybrid systems with SDI input, output and IP transmission have to be considered
that add additional delays to the workflow. In this paper, we cover both challenges, the switch
between hybrid workflows and the latency of software based compression systems.

JPEG XS as new mezzanine codec
With JPEG XS a tailored new mezzanine image codec was standardized at ISO [1] that allows an
algorithmic latency of typically 16 lines during encoding or decoding, in some special modes even
lower. In real world this latency can be realized with special hardware implementations (ASIC,
FPGA), but such approaches eliminate the advantage of using standard computer equipment.
The low algorithmic latency of JPEG XS in general is achieved by an asymmetrical wavelet
transformation and a “rolling buffer” rate allocation with a limited look-ahead window. For software
implementations, however, such a design alone is not sufficient as it defines essentially a serial
codec that is unable to achieve the throughput for UHD-1 or UHD-2 images. Thus, the architecture
requires additional refinement to allow parallelization. Luckely, JPEG XS is an inherently parallel
design as it allows splitting the source images after the wavelet transform into slices of 16 lines
high and calculating the rate distortion for these slice independently. A more detailed explanation
of the features and operation of JPEG XS can be found in [3].
For this paper, it is important to note that slices can be processed independently by individual
software threads. Taking an UHD-1 video (3840x2160 Pixel) as example, the image can be
splitted into 2160/16 = 135 slices. In order to avoid a high level of administration effort due to the
thread management, several consecutive slices can be combined into slicegroups that are
processed by the same thread, thereby reducing the number of threads. This paper explains the
right balance between number of slices in a slicegroup, the number of threads and related latency.

Case Study Setup
For this case study, we use a typical setup with components integrated in servers for a video
processing pipeline.
Figure 1 shows the typical standard design for a software based processing pipeline.

• A video source generates a video stream on a SDI interface.
• Server 1 is equipped with a SDI capture card and a 10GbE Ethernet interface at the ouput.

The data transfer for IP transmission is based on RTP packets with RFC 9134 [6] and
SMPTE ST 2110-22 [4]. Inside there will be some video processing and encoding to further
transmit the data to the next processing node. As we only want to evaluate the I/O and
coding latencies, the video processing unit is omitted.

• The reverse happens at Server 2: data are received on an IP interface, decoded and then
output via an SDI playout card.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 3

Capture
Card

12G-SDI
(2160p60)

JPEG XS
Encoder
Software

RTP+2110
Encap, IP-
Interface

10GbE
Network

Playout
Card

JPEG XS
Decoder
Software

2110+RTP
Decap, IP-
Interface

12G-SDI
(2160p60p)

Server 1 Server 2

Figure 1. Typical I/O pipeline for video processing

In a first step (Design 1) we calculate the latency using previous I/O cards and a sequential
processing, in a second step we propose a new design (Design 2) with recent I/O cards and a
staggered processing pipeline.

Design 1 (Standard design)
The typical operation is frame based and sequential (Figure 2) [2]. That means, the SDI input card
captures first one complete video frame before a data transfer to the PC memory is initiated. The
data transfer is typically done via Direct Memory Transfer (DMA) methods. For a UHD-1 image
the data transfer on a PCIe 2.0 x8 interface can last up to a third of a frame at 60Hz. Then an
encoding is initiated, which can also last up to one frame dependent on the performance of the
computer. It cannot last longer as otherwise the thoughput of the server is not sufficient. At the
end of the data processing in server 1, the data are packetized and sent over an IP stack on the
Ethernet interface to the network. The overall latency is about 5 frames.

Framebuffer filled on Capture Card
(≈1 frame)

DMA-Transfer
to PC memory

IP-Encap and transmit

Multi-threaded encoding
(<1 frame)

Receive and IP-Decap

IP-Network
Delay

Multi-threaded decoding
(<1 frame)

DMA-Transfer
to playout

card

SDI
out

 Overall latency 5 frames

SDI in

frame n frame n+1 frame n+3 frame n+4 frame n+5

Frame Sync

Framestart at
SDI input

Framestart at
SDI Output

Figure 2. Dataflow and timing in Design 1

The latencies are summarized in table 1:

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 4

Orign Source Delay

SDI Capture Card Framebuffer filled before DMA
transfer is initiated

≈1 frame

DMA transfer to PC
memory

Data per UHD-1 frame: 20MByte
Example:
BMD Decklink 4k extreme 12G
PCIe 2.0x8 theoretical 4GByte/s

Frame duration @ 60p: 16,6ms
Transfer time min:
20/4000s = 5ms
≈1/3 frame

Frame based encoding Multi-threading, depend on
performance of computer

< 1frame

IP transmission Data collecting, Packetizing, Traffic
Shaping

≈1/8 frame

IP-Network Transport, Routing
Depend on distance

Very low in LAN

IP reception Packet collecting, Sorting,
Data Buffer filling

≈1/8 frame + 1 frame due to traffic
shaping on sender side

Frame based Decoding Multi-threading, depend on
performance of computer

< 1frame

DMA transfer from PC
memory to SDI card

Same as capture card ≈1/3 frame

Sync at output Waiting for frame sync <1 frame

Table 1. Latencies in Standard Design

Design 2 (Ultra low latency Design)
As mentioned before, JPEG XS has the concept of slice based processing, with slices being
coded independently of each other. This can be used for parallelized coding and decoding of
the image [5]. For an ultra-low latency design, the SDI input and output cards should allow
subframe DMA transfers. A subframe is ideally an integer number of slices, e.g. 3 slices with
3*16=48 lines. This allows transferring first lines (e.g. one slicegroup with three slices) to the PC
memory while capturing the rest of the frame.
A first encoding thread (Thread 1) can start if the first two slicegroups were transferred to the
PC memory. The next thread (Thread 2) can be started after the next DMA transfer is finished
and so on. After the first slicegroup is coded by Thread 1 it can be packetized and sent to the IP
interface. One or more separate threads for IP interface handling allow parallel working of
encoding and transmission. This realizes a kind of data waterfall concept or staggered design.
Note: Some encoding threads can be faster than others and may finish their work head of time,
even if started later. If an ordered transport of packets is desired, a synchronization point or data
reordering has to be established for the packetizing, data transmission and traffic shaping to the
IP interface. The JPEG XS RTP interface allows, however, also out-of-order transport that puts
the burden of re-assembling the data stream in order to the receiver. This is possible as JPEG
XS RTP packets carry in their header their target designation in the bitstream.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 5

Enc Thread 2

Enc Thread 3

:

IP pack.Enc Thread 1

Framebuffer filled on Capture Card
(≈1 frame)

IP unpack

Latency
IP-Network

:

:

Dec Thread 1

Dec Thread 2

Dec Thread 3
:

Outbut buffer filled on Playout Card
(≈1 frame)

frame n

IP-Packet Management and Traffic Shaping for frame n

Latency
Encoding Slice

Latency
Decoding Slice

IP unpack

IP unpack

IP pack.

IP pack.

Framestart at
SDI input

DMA transfer
every
slicegroup

Framestart at
SDI output

DMA transfer
to output
buffer

Figure 3. Dataflow and timing in staggered design

Latencies can be calculated as defined in table 2 (example with slicegroup of three slices):

Orign Source Delay

SDI Capture Card Two slicegroups before DMA transfer
starts

Lines received/total lines/fps=
2*48/2250/60s = 0,71ms

DMA transfer to PC
memory

Data per slicegroup: 460kByte
Example:
Deltacast 12G
PCIe 3.0x8 theoretical 7,8GByte/s

Transfer time min:
0.461/7800s = 0,06ms

Slicegroup based
encoding

Per Slicegroup at 2bpp target rate
Example:
AMD Threadripper 3970X (3.7GHz)

Average Encoding time per
slicegroup: 1,72ms

IP transmission Data collecting, Packetizing, Traffic
Shaping

IP-Network Transport, Routing
Depend on distance

Depends on transmission channel,
very low in LAN

IP reception Packet collecting, Sorting,
Data Buffer filling

Slicegroup based
decoding

Per Slicegroup at 2bpp target rate
Example:
AMD Threadripper 3970X (3.7GHz)

Average Decoding time per
slicegroup: 1,15ms

DMA transfer from PC
memory to SDI card

Same as capture card Transfer time min:
0.461/7800s = 0,06ms

Sync at output Waiting for frame sync <1 frame

Table 2. Latencies in Staggered Design

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 6

The delay from the SDI input to the decoder output without IP handling can be added up to:
0,71ms+0,06ms+1,72ms+1,15ms+0,06ms= 3,7ms which offers enough reserve for the IP
Handling and the synchronization up to the next frame.

Experimental results
Performance tests were executed on an AMD Threadripper 3970X to calculate the average
throughput per core for encoding and decoding.
For the Fraunhofer JPEG XS SDK 4.1 this ended up in the following values:

AMD Threadripper per core with virtual 1 GHz
Average coding time per slice in ms for 422 content

type tencoding (ms) tdecoding (ms) NumberSlices
2160p/2bpp 2,122 1,411 135
2160p/3bpp 2,384 1,688 135
2160p/4bpp 2,534 1,916 135

Table 3. Processing times forJPEG XS (Fraunhofer SDK4.1)
A calculation shows that one core on an AMD Threadripper with 3.7Ghz clock needs a
processing time per slice for 2bpp target rate of 2.122ms/3.7(GHz)=574us, for decoding
1.411ms/3.7(GHz)=382us. Compared to the input data rate on a 12G-SDI interface
(16/2250/60s=118us), this results in a processing factor to real-time uncompressed
transmission of 574/118 = 4.9 for encoding and 382/118=3.3 for decoding.
Put in another way, more than 5 cores should be used for encoding of UHD-1 content to 2bpp
and more than 4 cores for decoding. These are optimal values, in real systems enough
headroom should be given for processing. With three slices per slicegroup 45 threads have to
be processed for a UHD-1 image. By pinning multiple threads to the same core (in the example
with 9 processing cores), e.g. Thread 1, 10, 19, 28, 37 to Core 1; Thread 2, 11, 20, 29, 38 to
Core 2 and so on, a good load balancing can be achieved.

Implementation
Fraunhofer implemented a ULL JPEG XS system based on the above principles, using AMD
threadrippers for both encoding and decoding. Source material is currently generated by a UHD
camera. To ensure proper synchronization of encoder and decoder, a clock generator creates a
tri-level sync signal the camera and the decoder genlocks to. JPEG XS implementations at
encoder and decoder use both a single slice per slicegroup, and utilize 16 threads both for
encoding and decoding. This design ensures lowest possible latency as each slice is processed
by its own processor core, though creates some additional overhead due to the overlapping
wavelet transformation. For transport, an out-of-order RTP based JPEG XS stream is used,
following the latest IETF specification. That is, encoder threads push encoded data out to the
network as soon as it becomes available, and the decoder needs to re-assemble the packets in
proper order.
As the decoder needs to run behind the encoder, an additional delay is added to the received
tri-level sync signal and the start of frame generated by the play-out card. It is easy to see that
this delay must be at least as large as the end-to-end (encoder-in to decoder-out) latency.
Measurements with an IP analyzer (Tektronic prism) showed that this system reaches an end-
to-end latency of 180 lines.

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®) 7

Conclusion
We prototyped a UHD-1 JPEG-XS software-based ultra-low latency system. By careful design
and allocating of processing threads on a multicore CPU, latencies far below 1 frame can be
achieved.
This can be realized by splitting the workload on a slice or slicegroup granularity to multiple
threads. The number of threads and the latency can be adapted to the available number of CPU
cores and the performance per core.
For the data transfer on the IP network, a slice based packaging and out-of-order transmission
was choosen. This enables direct packaging in IP packets and immediate dispatch after the
encoding task is completed. At the receiver side, the slices will be reordered and ingested into
the image frame.
As a result, in a synchronized system (with a frame synchronizer on the output of the decoder),
one frame delay between input and output of the transmission chain is achievable.

References
[1] ISO/IEC 21122, “Information technology — JPEG XS low-latency lightweight image coding
system”
[2] K. Itakura, M. Miyazaki, S. Fößel and M. V. Dorpe, "JPEG-XS Codec Adapted to 8K and ST
2110," SMPTE 2020 Annual Technical Conference and Exhibition, 2020, pp. 1-8, doi:
10.5594/M001904.
[3] A. Descampe et al., "JPEG XS--A New Standard for Visually Lossless Low-Latency
Lightweight Image Coding," in Proceedings of the IEEE, doi: 10.1109/JPROC.2021.3080916.
[4] "ST 2110-22:2019 - SMPTE Standard - Professional Media Over Managed IP Networks:
Constant Bit-Rate Compressed Video," in ST 2110-22:2019 , vol., no., pp.1-6, 14 Aug. 2019, doi:
10.5594/SMPTE.ST2110-22.2019.
[5] Thomas Richter, Joachim Keinert, Siegfried Fößel, "Parallelization and multi-threaded latency
constrained parallel coding of JPEG XS," Proc. SPIE 11137, Applications of Digital Image
Processing XLII, 111370J (6 September 2019); https://doi.org/10.1117/12.2526917
[6] IETF, "RTP Payload Format for ISO/IEC 21122 (JPEG XS)",
https://datatracker.ietf.org/doc/rfc9134/

