
The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the
official position of the Society of Motion Picture and Television Engineers (SMPTE), and its printing and distribution does not constitute an
endorsement of views which may be expressed. This technical presentation is subject to a formal peer-review process by the SMPTE Board
of Editors, upon completion of the conference. Citation of this work should state that it is a SMPTE meeting paper. EXAMPLE: Author's Last
Name, Initials. 2021. Title of Presentation, Meeting name and location.: SMPTE. For information about securing permission to reprint or
reproduce a technical presentation, please contact SMPTE at jwelch@smpte.org or 914-761-1100 (445 Hamilton Ave., White Plains, NY
10601).

© 2021 Society of Motion Picture & Television Engineers® (SMPTE®)

Hue-Preserving Color Transforms for LED Wall Virtual
Production Workflows

Michael D. Smith, Engineer
Wavelet Consulting LLC, 321 N Pass Ave #145, Burbank, CA 91505, miksmith@attglobal.net

Michael Zink, Vice-President, Emerging & Creative Technology
Warner Bros., 4000 Warner Blvd, Burbank, CA, 91522, Michael.Zink@warnerbros.com

Written for presentation at the
SMPTE 2021 Annual Technical Conference & Exhibition

Abstract. Virtual Production using LED wall display technology is gaining popularity in the
entertainment industry to produce motion pictures, episodic television, live broadcast and esports
content. This new paradigm typically uses one or more large LED displays that contains millions of
individual Light Emitting Diodes (LED) that are used to display a virtual background and/or
foreground objects from a virtual scene that is simultaneously captured by the digital photographic
camera on set, resulting in so-called “in-camera visual effects”. In a virtual production workflow,
digital cameras capture the actors and objects on the set in the foreground while simultaneously
capturing the image shown on the LED wall behind the actors. Realtime video game rendering
engines update the image shown on the LED wall image to compensate for changes in camera
location, camera pose and focal length. Modern digital camera workflows typically include color
transforms that were not designed to accurately render the large areas of saturated colors that are
possible when capturing the image shown on an LED wall. Some examples of a hue shift that can
occur in typical workflows are blue to cyan, red to pink, red to orange and green to yellow.

We found these hue shifts can occur dynamically while racking focus to and from the LED wall, and
also statically when the LED wall is kept out of focus, which is a common technique that is used to
minimize moiré artifacts. This paper explores a simple modification of these common color
transforms to preserve the hue of the scene while also creating a similar Look of the existing color
transforms.

Keywords. LED Wall, Virtual Production, Color Transform, Lookup Table, LUT, hue shift, hue-
preserving, rendering.

(The SMPTE disclaimer is on a footer on this page, and will show in Print Preview or Page Layout
view.)

2

Introduction
Color transforms used in modern digital camera workflows do not typically preserve the hue of
the scene while rendering from the captured scene-referred RAW or LOG formats to video
distribution formats like BT.709 or BT.2100. These hue shifts are most noticeable when the
imagery from the scene contains bright saturated colors. In traditional production, bright
saturated colors are not commonly captured by cameras, except for neon and other practical
lights, such as car brake lights or traffic lights in outdoor scenes. If green-screens are used to
create virtual backgrounds after camera capture, the green-screen imagery is replaced with
VFX imagery that is adjusted so the composite (“comp”) looks as intended through a viewing
LUT, allowing the compositor to artistically compensate for any hue-shifting inherent in the
viewing transform. These are some reasons that the lack of hue-preservation has gone
unaddressed. In contrast to these legacy workflows, it is very easy to capture large areas of
bright saturated colors when using a LED wall in a virtual production workflow. The bright
saturated colors that can be emitted from LED walls can stimulate hue-shifts when processing
the footage through common digital camera viewing LUTs.

Common rendering color pipelines do not preserve hue
Common camera rendering color pipelines, like ARRI has documented in SMPTE RDD 31
Annex B [1], are not typically hue-preserving. Transforms that do not preserve hue have a long
history in our industry and have been the basis of an accustomed look of photography with roots
in the legacy of photochemical film reproduction. Many digital camera rendering algorithms
were designed to reproduce the look that was achieved by the photochemical film cameras that
those digital cameras were designed to replace. These non-hue preserving digital camera
rendering algorithms have of course been used to produce beautiful award-winnning motion
pictures and episodic television that have been enjoyed worldwide.
While such rendering transforms that do not preserve hue have been widely accepted by the
industry, if they are used to render images captured using virtual production stages with LED
wall backgrounds, there is the potential for strong unexpected hue shifts. Our current focus is
on the changes in hue that occur in the viewing transform, which is just one part of multi-step
modern color pipeline illustrated in Figure 1.

3

Viewing transforms
Viewing transforms usually include a few different components that are usually consolidated into
a single 3D lookup table (LUT) that performs all the operations simultaneously. The important
components in a viewing transform are:

1. Creative Look – global adjustments to scene-referred imagery to achieve creative goals
like changes to saturation, contrast, gain, etc.

2. Rendering – scene-referred to display-referred format conversion usually includes tone-
curve processing that boosts shadow detail, increases midtone contrast and rolls off
highlight details.

3. Display Transform - prepares rendered imagery for display on a specific type of video
device and usually includes encoding primary conversion (rendering primaries to display
encoding primaries), formatting for a video interface or distribution-file includes inverse-
EOTF aka “gamma correction” and full-to-legal conversion if necessary. The display
transform can also include steps to compensate for viewing environments or display
gamut reduction.

How is hue altered by viewing transforms?
We have identified two high-level causes of hue shifts that happen viewing transforms:

1. Applying the rendering tone-curve independently to R, G and B channels
2. Clamping out-of-gamut colors to the display gamut boundary

When the rendering tone curve is applied independently to R, G and B channels, the RGB color
ratios can change, which modifies the hue and saturation of the output. Figure 2 shows an
example tone curve with red, green and blue dotted lines representing the independent R, G, B
channel processing of an example bright blue input color (R,G,B)=(0.2, 2.0, 12.0). The resulting
output color is cyan (R,G,B)=(0.06,0.70,0.96).

4

In this example, the R/G ratio changes from 0.2/2.0 = 0.100 to 0.06/0.70=0.085, the G/B ratio
changes from 2.0/12.0=0.167 to 0.70/0.96=0.729 and the R/B ratio changes from
0.2/12.0=0.017 to 0.06/0.96=0.063. The altered RGB ratios can also be expressed as simple
red-green chromaticities (r,g) = R/(R+G+B), G/(R+G+B), for example the input color has (r,g) =
(0.007,0.142) and the output color has (r,g) = (0.035,0.407). If we associated specific (x,y)
chromaticities to the RGB primaries and white-point used in this example, we could compute the
(x,y) chromaticity of the input and output colors and also compute a perceptual color difference
like ΔE.
Clamping out-of-gamut colors to the display gamut boundary can also cause hue shifts in
viewing transforms. Clamping is typically applied independently to R, G and B channels and
forces each R, G, and B value to be in the range 0.0-1.0. Clamping is a common step before
inverse-EOTF encoding that involve power functions that are undefined for negative input
values when the power function’s exponent is not an integer, for example, pow(-0.1,1/2.4) is
undefined on many platforms. Additionally, many LUT processors don’t support input values
outside the range 0.0-1.0 and use a clamp() operator on the input R, G, B before doing the LUT
interpolation.
The following example illustrates how a hue-shift can occur due to the clamp() operation applied
after an encoding primary conversion. Suppose an orange input color (R,G,B)=(0.85, 0.50,

5

0.03) is processed by an Arri Wide Gamut (AWG) to BT.709 encoding primary conversion
according to the following equations:

Rout = 1.62 * R + -0.54 * G + -0.08 * B
Gout = -0.07 * R + 1.33 * G + -0.26 * B
Bout = -0.02 * R + -0.23 * G + 1.25 * B

This results in BT.709 RGB values (1.10, 0.60, -0.09), the presence of RGB values outside the
range 0.0-1.0 indicates the input AWG color is out-of-gamut in BT.709. If a clamp() operator is
applied, the result is (1.0, 0.60, 0.00). In this example, the rg-chromaticity is altered by clamp().
The unclamped BT.709 color has (r,g)=(R / [abs(R)+abs(G)+abs(B)], G /
[abs(R)+abs(G)+abs(B)]) = (0.615, 0.335) while the clamped BT.709 color has (r,g)= (0.625,
0.375).

Modification to color pipelines to preserve hue
The non-hue-preserving color transform described in SMPTE RDD 31 Annex B has three basic
steps:

1. apply a sigmodal tonecurve independently to each R, G and B ARRI Wide Gamut LogC
encoded data. The tonecurve is shown in Figure 3.

2. Apply a 3x3 matrix to convert AWG primaries to BT.709 primaries with some additional
desaturation.

3. Apply inverse-EOTF “gamma-correction” to convert the BT.709 display linear signal to a
BT.709 video non-linear signal.

Figure 3 - sigmodal tonemapping curve

6

The RDD 31 rendering algorithm can be modified to preserve hue using norm-based tone curve
processing [2] by following these steps:

1a) Compute norm maxRGB_logc = max(R_logc, G_logc, B_logc)
1b) Apply tonemap to maxRGB_logc

 maxRGB_display_linear_awg = tonemap(maxRGB_logc)
1c) Compute scaling_factor = maxRGB_display_linear_awg / linearize(maxRGB_logc)
where linearize() converts from LogC to scene-linear according to equation 5.6 in
RDD31.
1d) Compute linear AWG values

 R_awg=linearize(R_logC)
G_awg=linearize(G_logC)
B_awg=linearize(B_logC)

1e) Multiply AWG red, green, and blue values by scaling_factor
 R_display_linear_awg = scaling_factor * R_awg

G_display_linear_awg = scaling_factor * G_awg
B_display_linear_awg = scaling_factor * B_awg

After step 1a-1e are complete, the same steps 2 and 3 as described above can be followed.

Examples of Hue-Preserving Color Transforms using imagery from LED Wall
Virtual Production stage
A test scene was configured with colorful foreground objects, this paper’s co-author Michael
Zink sitting next to a gray card and color checker chart in front of an LED wall. The LED Wall in
the background is lighting the scene from both the back and the side. A key light was also
configured to light the scene from the front on camera-left. The LED wall luminance was set to
360 nits and the wall was set to operate with its native primaries in Acheivable Gamut mode. An
Arri Alexa LF camera was used to capture footage of the test scene and was set to ISO 800 and
shutter angle 180-degrees. The camera was configured with an ARRI prime with aperature
T2.8.
Figure 4 illustrates the differences that result from using the default ARRI LUT described in RDD
31 Annex B and the hue-preserving modification described in the previous section. The hue-
shift that results from the RDD 31 Annex B viewing transform is most visible with the bright red
and blue backgrounds that change to pink and cyan respectively.

7

Figure 4 - Comparison of two different viewing transforms applied to the same LogC image data, the left side

corresponds to SMPTE RDD31 Annex B and is not hue-perserving. The right side is hue-preserving and implements
the modified rendering process described in this paper.

8

Figure 5 - cropped section of images showing face lit from the side with light from LED wall with SMPTE RDD31
Annex B viewing transform

Figure 6 - cropped section of images showing face lit from the side with light from LED wall with MaxRGB hue-
preserving viewing transform

LED walls are also often used for lighting and reflections in Virtual Production. Preserving hue
between the background and objects lit with colored light from the LED wall helps reduce
discrepancies that break the consistency between visual effects and photography of real
objects. An example illustrating this is the colored lighting on the right side of the faces shown
in Figure 5 and Figure 6. With the non-hue preserving viewing transform in Figure 5 there is a
discrepancy between the hue on the side of the face in colored lighting and the background, that
is especially notable in the red and blue backgrounds that appear pink and cyan while the face
appears red and blue. In Figure 6 with the hue-preserving transform, both the face in colored
lighting and the background appear have consistent color.

Figure 7 – cropped area of images showing face with RDD 31 Annex B viewing transform, out of focus

Figure 8 - cropped area of images showing face with MaxRGB hue-perserving viewing transform, out of focs

In regions that are out of focus, the light levels of an area become blurred together. In the
independent R, G, B tone curve rendering that is not hue preserving, the hue changes with the
intensity of the area. Bright areas have bigger hue shifts than darker areas, and therefore the
areas that have large contrasts in light level, for example the bright background versus the
dimmer foreground show hue shifts in the out of focus bokeh. This hue shift appears as a halo
around foreground objects. For example, in Figure 7 with the non-hue-preserving viewing
transform, the head is surrounded by a red halo that transitions to a pink background. The hue-
perserving norm-based tone curve rendering shown in Figure 8 does not change the hue

9

dependent on the intensity, thus when it goes out of focus and bright and dim areas blur
together, the hue in those areas do not change.

Hue-perserving Viewing Transform Alternatives
While we have focused on a hue-perserving viewing transform using a max() norm, there are
other alternatives, as identifed in [2]. The results of several alternatives are shown in Figure 9.

Figure 9 - Examples of hue-preserving viewing transfrom alternatives, from top to bottom, RDD 31, RDD 31 with
hue_restore_dw3() [3] applied after the independent RGB tone curve and again after the AWG to BT.709 primary
conversion, MaxRGB-norm, MaxRGB-norm with hue_restore_dw3() applied after AWG to BT.709 primary
conversion, Power-norm (5ths over 4ths), Power-norm (5ths over 4ths) with hue_restore_dw3() applied after AWG to
BT.709 primary conversion

Conclusion
Given that many LED walls are able to show very bright and saturated colors and the new
paradigm of LED-based Virtual Production dicates that the camera directly capture the image
shown on the LED wall, it is expected that the characteristics of the captured image will be
different than images captured on traditional physical sets. We studied the performance of
viewing transforms when handling bright saturated colors from LED walls and how a commonly
used viewing transform results in undesirable hue shifts. We confirmed that when a viewing
transform was specifically designed to preserve hue, it handles the bright saturated color in a

10

more predicable way. Thus we expect hue-perserving viewing transforms to be relevant in this
new workflow paradigm.

References
[1] "RDD 31:2014 - SMPTE Registered Disclosure Doc - Deferred Demosaicing of an
ARRIRAW Image File to a Wide-Gamut Logarithmic Encoding," in RDD 31:2014 , vol., no.,
pp.1-17, 26 Sept. 2014, doi: 10.5594/SMPTE.RDD31.2014.
[2] G. Demos and D. Walker, "Core Color Rendering Algorithms for High Dynamic Range
Display," in SMPTE Motion Imaging Journal, vol. 127, no. 9, pp. 1-9, Oct. 2018, doi:
10.5594/JMI.2018.2810022.
[3] restore_hue_dw3() function – on lines 26-84 of file /v0.7.1/transforms/ctl/utilities/ transforms-

common.ctl, available in ACES 0.71 – accessed online https://github.com/ampas/aces-
dev/blob/v0.7.1/transforms/ctl/utilities/transforms-common.ctl

https://github.com/ampas/aces-dev/blob/v0.7.1/transforms/ctl/utilities/transforms-common.ctl
https://github.com/ampas/aces-dev/blob/v0.7.1/transforms/ctl/utilities/transforms-common.ctl

	Hue-Preserving Color Transforms for LED Wall Virtual Production Workflows
	Written for presentation at the
	(The SMPTE disclaimer is on a footer on this page, and will show in Print Preview or Page Layout view.)
	Introduction
	Common rendering color pipelines do not preserve hue
	Viewing transforms
	How is hue altered by viewing transforms?

	Modification to color pipelines to preserve hue
	Examples of Hue-Preserving Color Transforms using imagery from LED Wall Virtual Production stage

	Hue-perserving Viewing Transform Alternatives
	Conclusion
	References

